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ABSTRACT

This work is chosen to analyze the rotary winding machines because
these machines are existed in our country and this analysis is practical
from the side of input values and getting the results. Good rotary
winding machine design practice demands the analysis of the system
to insure that the reaction due to operation of the machine will not
cause damaging vibrations. The widest phenomenon in vibration
forms in mechanical transmission is the torsional vibration. The aim
of this work is the analysis of the torsional vibrations of these rotary
winding machines and to minimize that vibrations and to alleviate
recurring costly maintenance problems.

To minimize system dynamic torques it is necessary to spread the
torsional natural frequencies. This is best achieved by lowering the
fundamental torsional natural frequency. In main rotary winding
machine drives this is most readily accomplished by lowering the
torsional stiffness at the lead spindle location or, by making the lead
spindle torsional flexibility greater by increasing the shaft separation
or, if necessary, by using a torsionally flexible spacer. Torsional
stiffness is inversely proportional to shaft length. For the solution of
the problem one must first of all estimate the physical system
parameters taking into consideration the real set of components of a
rotary winding machine and then to transform them into a
mathematical model. In this work there was also the method of
calculation model presented.

The equations of motion of the whole vibrating system are defined
and the study include solution of torsional vibration of this machine
by using Jacobi method as method of solution because it is easy to
program and accurate. A computer program (Math Lab) has been used
in order to Facilitate the solution because it is contain already
comments specialized to solve the vibration problems. Finally, finding
the final results gave a good vision to forecast the failure of the
machine that could caused either by errors in design or operating
conditions.

Key words : Torsional vibration, Torsional frequency, Torsional
torque, Rotary machines, Torsional drives, Torque amplification
factors, Dynamics of winding drives, Jacobi method.
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1. INTRODUCTION

Vibration of a physical structure often is thought of in terms of model consisting of a mass
and a spring [1]. The vibration of such a model, or system, may be free or forced. In free
vibration, there is no energy added to the system but rather the vibration is the continuing
result of an initial disturbance. In a real system, energy dissipation causes the amplitude of
free vibration to decay continuously to a negligible value. Such free vibration sometimes is
referred to as transient vibration [2]. Forced vibration continues under steady-state
conditions because energy is supplied to the system continuously to compensate for that
dissipated in the system. The forcing frequency at which energy is supplied appears in the
vibration of the system. The vibration of the system depends upon the relation of the
forcing frequency to the natural frequency. This relationship is a Prominent features of the
analytical aspects of vibration [2].

The technology of vibration embodies both theoretical and experimental facets
prominently. Thus, methods of analysis and instruments for the measurement of vibration
are of primary significance. The results of analysis and measurement are used to evaluate
vibration environments, to devise testing procedures, and testing machines, and to design
and operate equipment and machinery [3]. In this work the objective is to eliminate
vibrations or reduce their severity or, alternatively, to design equipment to withstand their
influence. The wide phenomenon in vibration arms in mechanical transmission is the
torsional vibration. Therefore the theory torsional vibration and its applications have
reached large expansion of this branch was due to practice needs [4].

Torsional vibration involves angular oscillations of the rotors of a machine. Dynamics
problems associated with rotary machines drive system generally result from the torsional
vibrations. The torsional vibration problem arises when the natural frequencies of a system
and/ or its components are within the operating range of the system, critical speeds may
exist in which dynamic effects are predominant and give rise to large amplitude vibration.
These vibrations can have a detrimental effect on fatigue life, regulating system
performance, product quality and noise levels. For large rotating machinery the mechanical
system consists of several rotors that are connected by relatively shafts and couplings. For
example, Figure (1) is the photograph of the drum of winding machine.

It has the large diameter rotor bodies section and relatively flexible shafts extensions.
Each rotor in the system has oscillated following a torsional disturbance to the machine
about its rotational axis, resulting in twisting in the shafts and to a lesser extent in the large
diameter rotor bodies themselves. For some machines involving geared rotor connections,
for example, there are many several rotor axes of rotation. The twisting oscillations
following several torsional disturbances to the machine may be sufficient to cause fatigue
damage to the shafts of the machine and the other components [2] .

In the design of rotating machinery, torsional vibration analysis is vital for ensuring
reliable machine operation. If shaft and rotating component failures occur on these large
machine as a result of shaft torsional oscillations, the consequences can be catastrophic. In
the worst case, the entire machine can be wrecked as a result of the large unbalancing
forces that can arise following shaft separation and turbine blade failures, and this has
actually occurred. There is also potential for loss of human life, for these reasons great
attention is generally taken at the design stage to ensure that high-speed rotating machines
have the required torsional capability.
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Figure (1): Photograph of Drum of Winding Machine [5].

2. EXPLANATION OF THE SYSTEM

2.1 Defining the problem

The equipment arrangement of a modern winding machine is shown in Figure (1)
consisting of several stage of gear boxes in order to control speed either reduction or
magnification, because level of speed is controlling the wind quality of the cable. Also,
there are large pulleys in order to organize the tension and reduce the diameter of the cable
as final process. From a mechanical point of view, the determination and correction of
responses of the system began with an evaluation of each individual stand considered as a
separate entity. As the operation proceeds through each of these stands, at different speeds,
each stand in turn is subjected to the initial different speed operation. At the instant of
operation, each of these stands can be considered an integral system, consisting of all
rotating components-rolls, pulleys, gears, motor rotors and their interconnecting shafts,
couplings and spindles. With due regard for the composition, size, shape, dimension, and
strength of all parts, the task at hand is to determine the response of each of these
mechanical systems to the load imposed at the instant of operation.

2.2 Physical analysis of the system

To reduce the problem to a manageable form, many of these contributing factors must be
assumed to have minor influence on the character of the behavior of the drive train.
Fortunately, there is an abundance of technical literature dealing with the construction of a
suitable physical model [6, 7, 8].

Most of this development is devoted to the consideration of steady- state vibration, the
usual concern in reciprocating engine and compressor drives, but is equally applicable to
the investigation of transient torsional vibration. This phase of the analysis is, consequently,
clear-cut and can be relied upon to yield precise information about the natural frequencies
of the system, the stresses which will occur as a result of torsional deflection at various
stations and to suggest possible changes which can be made to reduce the torque
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amplification factors which exceed specified values. The resolution values of all actual
components of the drive into their physical is shown in Figure ( 2).

Figure 2 : Layout of a Rotary Winding Machine [9].

This is a sample layout of a production line of rotary winding machine. There is one
motor that has operated the production line and are has rated power up to 90 KW and also
there are gear boxes control the speeds. Each gear box has played an important role to make
speed at each portion in the line of production as independent. The shafts of the system are
made of steel structure A-36 and employed for motion transmission between different
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stages and connected by means of pin bushes ( flexible couplings) which are used elastic
sleeve pin couplings instead of attachment bolts. Through the sleeve pin is usually oil
resistant rubber. Also this winding machine has braking system, the system has contained
two wheel drums, each one has capacity to be loaded with eight cable pulleys [5].

2.3 Mechanical analysis of the system :
To adapt the physical drive system shown in Figure ( 2 ) to a system may be validly
modeled as a series of concentrated inertias connected by massless torsional springs and
dampers. A typical block diagram model of a rotary winding machine is illustrated in
Figure ( 3 a ). In order to make an analysis the complete rotary winding machine drive
shown in Figure ( 2 ) is reduced to an equivalent spring mass system as shown in Figure ( 3
b).

The drive system is transformed into a single line spring mass system by the application
of fundamental equations of mechanics, Some of which are given as :
a ) for ease of analyzing the motor parts, choose the motor shaft speed as the base speed and
designate the other shaft speeds as ((n)) where ((n)) equals the speed ratio of the other
shafts with respect to the base .
b ) multiply all springs and inertias by n? . The effective stiffnesses of the shafts or
couplings on the high speed side of a gear box, referred to the low speed is the actual
stiffness multiplied by the gear ratio squared.

GJ
1. K= Tp , K is the torsional stiffness of the shaft in N.m / rad

e G isthe modulus of rigidity of the shaftin N/ m?

(G=75x10° N/m?, for steel structure A -36) [5].
e L isthe length of the shaft in m.

4
. Jp= n D
32
Jp is the polar area moment of inertia of the shaft in m* .
Ds is the diameter of the shaft in m ( Ds = 0.075 m, for all shafts )[5].

P PZ7
K, 3EJ
e vy isthe bending deflection of the gear teeth measured on the pitch circle in m.
(no slippage, i.e., no shear deflection ).

P is the circumferential force on the gear teeth in N.
. K -3E

£3

K is the Stiffness of gear tooth in N / m.

E is the modulus of elasticity of the deflected tooth in N / m2,
(E =210 x10° N/ m?, for steel )[5].

£ is length of the deflected tooth in m.
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64

J is the diametral area moment of inertia of gear in m*.
Dy is the pitch circle diameter of the gear in m.

GlJ 2
Ka="1"=7 - 1
Leq R —
Ktl KIZ
Keq is the equivalent rigidity of the transmission teeth of gears in (N.m) / (rad) .
(G =80 x10° N/ m?, for steel of gears )[5].
r1 is the pitch circle radius of the first driver gear in m.
e Ky isthe stiffness of first meshed driver gear in N/ m.
o Ky, isthe stiffness of Second meshed driven gear in N/ m.

1 1
Gl (—+—)

G Jp Ky Kgp
o |_eq = ” = >
eq r1
e L isthe reduced length of an equivalent shaft in m.
R2
4. I =m Kg =m —
e | isthe polar mass moment of inertia in kg.m? .
e m isthe mass of the rotating part in kg.
R2
e KZ=—
2

o K, isthe radius of gyration of the rotating part in m.
e Risthe radius of the rotating part in m.

5. c=2&,JKI =28,

e C s the viscous damping coefficient in (N.m) / (rad/s).

_ <
a_CC

€ is the damping ratio factor in dimensionless.

( & =0.8 for the designed winding machine)
K
2 —

2= —
|

® s the natural frequency of the rotating part in rad / s.

C.=2+KIl=2w,1

e
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e Ccisthe critical viscous damping coefficient in (N.m) / (rad/s).

6. Two springs in series K; and K can be represented by an equivalent spring.

1
K =
1 1
- + .
Kl K 2
7. Two springs in parallel K; and K can be represented by an equivalent spring K .
K=K;+K;

8. Rotational spring constant K of a hollow circular shaft of outside diameter D, ,
inside diameter D; and length L.

K:G‘]op_G‘]ip:Gn(D;‘_DiA‘)
L L 32L
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Figure (3): An Adapted Block Diagram Model of a Rotary Winding Machine.

2.4 Mathematical Analysis of The System
From point of view of mathematic analysis of general torsion system of the rotary winding
machine system there is but no difference between subsidiary flexible bindings and the
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Ferms_that describe so called branching of the system, example due to influence of gear-
ms?l'rlzlg rclilerivation of equations of motion of the mathematical idealized model of rotary
winding machine system shown in Figure (3 b) can be obtained by applying Lagrange's
equations or by applying Newton's second Law. Thus the equations of motion of the
winding machines system shown in Figure (3 b ) are :
L O,+K (01-02)+Ke(O1-05)=+Tu
1,05+ Ki(02-01)+Kag(02-03)=0
ls O3+ Creq (03- 04) +Kaeg (05-02)+Ks(035-04) =0
e 04+ Creq(04- 03)+Casq(04- 06)+Ks(0 4 0 3)+Kueg( O 2~ 05)+Ks( 04- 06)=0
ls 05+ Keeq (05-04)=0
ls ©6+ Caoq (06~ 04) +Ks (05- 04)+Keeg (06-07)=0
07+ Keeg (07-05) = 0
ls O+ Ke( 0g-01) +Koeg(0g-09) = 0
lo O9+ Caeq (00~ 010) + Koeg (09~ 05) + Ko (Os- 010)=0
10 010+ Caeg (010~ 09) +Kio (010~ 06) +Kuzeq (O 10- 011) =0
it 011+ Kiteq (011~ 010) +Ki2 (0 11- 012) =0
2 0124+ Kiz (0 12- 011) + Kiseq (012~ 015)=0
I3 0 13+ Kuseq (0 13- 012) + Ko (015~ 014) =0
e 010+ Ko (010~ 015) + Kiseq ( 010~ 015) + Kiseq (014~ 015) =0
lis 0 15+ Kuseq (O 15- 0 1) = Ty
lis 016+ Kiseq (0 16- 014) =Tz oo (1)

The above differential equations second orders with constants coefficients can be written

in matrix form as follows :-

MO + CO +KO =F(t) ...... (2)

Where,

M is a diagonal matrix mass moments of inertia.
C is a symmetric damping matrix.

K is a symmetric stiffness matrix.
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0 is a vector angular displacements of the masses.
0 is a vector angular velocities of the masses.

0 is a vector angular accelerations of the masses.
F(t) is a vector excited torques.

3. SOLUTION OF THE PROBLEM

For low speed motors the problem of torsional vibration of a shafting system is usually
ignored, because the torsional natural frequencies of a shafting system are much higher
than its operating speed so that their effects can be ignored. However, for high speed
motors, their effects cannot be ignored and have to be completely studied; and our problem
on the rotating winding machine one of this type. Such problems supply calculation
mathematical models with many degrees of freedom as shown in Equation (1) that can be
solved using numerical techniques and computers and there are many suitable methods to
solve the problem such as Holzer method and Jacobi method [10], whereas Holzer method
is in fact a systematic tabulation of the frequency equation of the vibratory system, method
of determining the shapes and frequencies of torsional modes of vibration of a system and
in this work used Jacobi method because this method is an algorithm for determining the
solution of the system of linear equation with largest absolute value in each row column
dominated by the diagonal element. Otherwise it is method of solving matrix equation on a
matrix that zeros along its main diagonal. Advantages of the Jacobi method are easy to
program and accurate; so that this method is explained in the following article.

Jacobi Method: The free vibration equation for an undamped system is obtained from
the general Equation (2), when F(t) and C are absent.
Therefore :

Consider the real eigen value problem with given symmetric matrices K and M with M
positive definite, hence the problem is to determine the eigen vectors v, and the eigen

values ? (r=1,...,n) which satisfy

Where (n) are the real roots for o> If K is singular, at least one root is zero. If K is
positive definite all roots are positive. The (n) roots determine the (n) natural frequencies of
the system. When a natural frequency @  is known, it is possible to return to equation (4)
and solve for the corresponding vector v, to within a multiplicative constant.

There are (n) independent vectors v, ( r = 1, ... ,n ) corresponding to the (n) natural
frequencies ®,(r=1, ..., n) which are known as eigen values. The complete solution to

the eigen value problem of Equation (4) consists of (n) eigen values and (n) corresponding
eigen vectors. These can be assembled compactly into matrices. Let the eigen vectors v,
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corresponding to the eigen value @ f have elements V; (the first subscript indicates which

row, the second subscript indicates which eigen vector ). The (n) eigenvectors then can be
displayed in single square matrix V, each column of which is an eigenvector.

Where j=1,...,n and r=1,...,n
The matrix V is called the modal matrix for the eigen value problem, equation (4).

The (n) eigen values (of can be assembled into a diagonal matrix €22 which is known as
the spectral matrix of the eigen value problem, Equation (4).

~

Q2 =[] ...... (6) -

By using the modal and spectral matrices it is possible to assemble all of these relations
into a single matrix equation :

Equation (7) provides a compact display of the complete solution of the eigen value
problem, Equation (4). By premultiplication the both sides of Equation (7) by VT and after
arrangement, it has reduced to :

VT KV
m = Q2 ... (8)

The problem of Equation (7) is reduced to an eigen value problem for a simple
symmetric matrix A = M2 K M2 with modal matrix U = MY2 V as follows :-

KV=MV Q2
K M-1/2 M1/2 V = M1/2 M1/2 v QZ
(M-llz K M-l/z ) (Mllz V) = (M1/2V) Qz
AU=UQ2 ... (9)
The solution of this eigen value problem, Equation (9) provides the spectral matrix €22

of the original problem. The modal matrix U has the property that its columns are
normalized so that :

Ur Uy =1,ie.,U"=Utand UT=U
By post multiplication the both sides of the Equation (9) by U7, it has reduced to :
AUU =U Q22U
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AUUl=U Q2UT
A=Al=U Q2UT ... (10)
Where, | is identity matrix or a diagonal unit matrix.

The basic computational operation in this method is the resolution of a single symmetric
matrix A into its modal matrix U and its spectral matrix €22 according to the relations

shown in Equation (10). Where €22 is a diagonal matrix of the eigen values (x)f, and the

columns U are the eigen vectors U, for the eigen value problem shown in Equation (9) .
Also, we can say that by premultiplication the both sides of Equation (9) by UT, it has
reduced to :
UTAU=U U Q?
UTAU=UtU Q?
UTAU=1Q2=0Q2 ... (11)
In comparison Equation (11) to Equation (8) we have deduced that :

VIMV=1l and VT K V= Q2?2
To obtain the modal matrix V of the original problem in Equation (7), it is necessary to
perform the matrix multiplication :

V=M®2U ... (12)

which follows from inverting the definition of U. It remains to indicate how the resolution
of Equation (10) is obtained by successive rotations.

4. RESULTS OF THE SOLUTION

By substitution all the values of the parts of the system and by solved it numerically by
Jacobi method which is programmed by Math-Lab program we get the results for
determining the frequencies, eigenvectors, and plotting the eigenvectors against the
distances of the system [9].

A) The input data :
a ) The constants data of the system, the mass moments of inertia matrix, the damping
coefficients matrix and the stiffness coefficients matrix.
b ) The size of square matrix A =M?2 =112
Where M =1 is the mass moments of inertia matrix.
¢ ) The size of square matrix C=A*K..
Where K is the stiffness matrix .
d) The size of square matrix D=C* A.
e ) The distances between the masses .
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B) The output data :

1) The output data are :-
a) The eigen values squared (Lam) ( natural frequency squared ) in ( rad/s )2.
b ) The eigen vectors ( V), ( mode shapes ) modal matrix.
¢ ) The eigen values ( E ) ( natural frequencies in diagonal matrix ) spectral matrix in (
rad/s ).

lam =
1. 0e=0048 =

27285
08348
05110
0.4893
0.3307
0.28%6
0.0632
0.0338
00016
0.0014
0.0003
0. D0
00000
0.0000
L0000
0. 0000

Ve Column 16

0.0000
0.0000
00000 -0.0000 00073 00000 -0.0036 00000 00000 -00000 02262 -0 1198 01022 09602 00254 00335 00172 0,0000
0.0000 00000 -00000 00000 09744 -0.0003 -0.0000 -00000 00678 0209 00057 -0.0450 -00013 00016 00008 0.0000
00000 00000 00000 -00000 02249 00001 00000 00000 02074 09100 00233 -0.1798 00052 0.0065 00031 yaan,
00000 00001 -0.0000 00000 00002 09999 00000 00000 00000 00001 00000 0.0005 -00138 00077 -0.0033 0.0000
00000 -0.0000 00000 -00000 -0.0000 00162 -00000 -00000 -00001 -0.0005 -0.0001 00353 08511 04757 -0.2188

00000 -0.9999 00000 00000 00000 00001 00000 00000 00000 00000 0.0000 -0.0000 00063 0.0082 -0.0067 -0.0000
00000 00123 00000 -0.0000 00000 00000 -00000 -00000 -00000 -0.0000 -0.0000 -0.0001 05114 06640 -0.5435 -0.0000
0.0000 00000 -09720 00057 -00000 00000 00000 00000 02124 -D0778 -0.0173 -0.0444 -0.0012 00016 00009  -0.0000
00000 00000 02312 -00003 00000 -00000 00000 00000 08962 03261 00740 -0.1773 00046 00064 00035 .0 0000
00000 00000 00054 09704 -00000 00000 00026 00007 00200 00083 02394 00217 0.0004 00015 0.0014 40000
00002 0.0000 00013 02414 00000 00000 00089 00024 00842 00349 09622 00866 00016 00060 00058 e
06912 00000 00000 00002 00000 00000 -07152 -01030 00006 -0.0003 00070 00006 -0.0002 -00010 -0.0014 20000
07226 00000 00000 00003 -0.0000 00000 -06838 -0.1007 00006 -0.0002 00064 00005 -00002 -0.0010 -0.0014 :
20016 0.0000 -00000 00000 0.0000 00000 01441 09889 00001 -0.0000 00010 -00010 -00041 -00203 00286  -0.0000
0.0000 -0.0000 0.0000 0.0000 -0,0000 00000 -00019 00250 -00001 00000 -0.0038 -0.0227 -0.0814 04069 -0.5716 <0.7071
00000 -00000 00000 0.0000 00000 00000 -00019 00250 -00001 0.0000 -0.0038 -0.0227 -0.0814 04069 -0.5716  0.7071

Columns | through 15
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L.' =

1.0e+009 *

Columns 1 through 15 Column 16

2.7285 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.8348 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 05110 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 04893 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 03307 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 02886 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 00632 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 00338 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.00i6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 00014 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 00003 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.0000 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

2) The plotting of mode shapes against the distances between the mass moments of

inertia of the system .
a) Before any modification changed of the stiffness of the shafts between the mass

moments of inertia .
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Corresponding Mode Shapes Before Modification
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b) After modification changed of stiffnesses of the shafts between the mass moments of
inertia.

MODIFICATION TO DETERMINE THE SUITABLE DESIGN :

When we changed all shafts of the system for propose of design modification in order to
select optimum stiffness of shaft, it has been noted that no notable change in amplitude
along the entire system i.e. shafts design is accurate, except change in stiffness of the shaft (
Ks ) which is located between masses number ( 3 & 4 ). The shaft ( K; ) changed by
addition ten percent and subtraction ten percent from value of its stiffness and can be seen
that changed in the figures (graphs) below.

Corresponding Mode Shapes After Modification
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1. Desiccation

The mathematical model, Equation ( 1) of the mechanical model is shown in Figure ( 3b
) are solved by Jacobi method using personal computer with Math-Lap program [10]. The
solution of this model was done in two ways:

1. Considering the model without influence of modification of stiffnesses of shafts

and plotting the results in the figures (4 to 19 ) where these figures are presented
the relationship between the different distances of the shafts of the system and
their responses amplitudes.
These relationships are expressed the torsional torques in each shaft of the system,
that is expressed the torque amplification factors in each shaft of the system,
whereas this torque amplification factor is the main source to failure the system
especially when it is bigger, that is out of the operation condition of the system.

2. Considering the model with influence of modification of stiffnesses of shafts by
changing each shaft in turns by increasing and decreasing its stiffnesses by ten
present of its original values and plotting the results in the figures (20 to 35).

By comparison the results from the figures before modification, figures ( 4 to 19 ), to the
results from the figures after modification, figures ( 20 to 35 ), we have got that the results
are same except in the shaft ( K3 ). Therefore this shaft must remove from the system by
another suitable one to avoid the failure of the system completely.

2. Conclusion of the Results :

For the solution of the problem one first of all define the problem estimate the physical
system and then the mechanical system to ease the system to analyze in form of
mathematical model for aim of computations and results.

The mathematical model, a powerful tool, has proved valuable in predicting the overall
dynamic behavior of drive systems of rotary winding machines. Figure ( 3-b ) shows an
arrangement of spring mass system of the drive system of the rotary winding machines.

Stated differential Equations (1) of a torsional drive system form the base of
compilation of a program of numerical solution on computer. After allocation of individual
constants one can numerically solve the transient states of regulating loop for the change of
stiffnesses. By means of these calculations it is possible to optimize variable parameters of
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regulating loop and to set in this manner the optimum regime of the whole torsional system
of the rotary winding machine drive.

We have chosen Newton's second law method [2] for the theoretical analysis of
vibration of the system for assemblies of equations of the torsional systems, and Jacobi
method [10] for solution of these equations. The program of numerical mathematics was
used here in Math-Lab programming language[9]. The calculation was done by means of a
PC computer.

There were analyzed the responses of the drive of the system without and with change of
characteristics of the shafts. At the same time all the results of the solution were compared.
The useful result for the design procedure is obtained from the plotting of the relative
amplitude values on the mass-elastic system diagram shown in the figures ( 20 to 35).

These plotted points join with a line ( this line is called the normal elastic curve ) Where
this line crosses the line representing shaft torsional stiffness ( really it represents torsional
flexibility as it is drawn to a length between masses inversely proportional to torsional
stiffness ), this is a nodal point ( point of zero torsional amplitude ).

The shaft portion which has the nodal point is the shaft which have the largest vibratory
vibration torque for that mode of vibration. For each natural frequency the number of
nodes equal the mode number.

The location of the nodal points indicates which shaft sections have the major effect
upon the frequency of that particular mode of vibration.

From stated calculations it is obvious that the importance of the influence of changing of
shafts stiffnesses may lead to incorrect results. It is clearly seen that the non respectation of
this changing may be substantially influence the course of investigated magnitudes so in
quantitative manner as also the character of behaviour of the system .

Hence for unambiguous reply to question at what conditions and how significantly
comes to force the influence of changing stiffnesses of shafts to the dynamics of the
system, more through experimental investigations are needed.

Following the simple design procedures presented here will remove much of the mystery
in finding a solution to torque amplification factor problems. Improved operating and
maintenance procedures and increased use of automated rotary winding machine systems
will afford additional major improvements in this area.

Now we conclude that the methods of vibration control may be grouped into :-

1. Reduction at the source by balancing of the moving masses, balancing of

magnetic forces and control of clearances.

2. Isolation of source and isolation of sensitive equipment.

3. Reduction of the response by, alteration of natural frequency, energy dissipation

and auxiliary mass.

The method and results of this work must be nevertheless considered only as a small
step one of many leading to more detailed recognition of dynamic actions and events of
changing of stiffnesses of shafts .

Also as to the problem solved in this work it is necessary to complete it by just a set of
following tasks. So example, there will be necessary to solve:

1. The set of equations equation (1), with consideration of damped gears.

2. The system without reduction.

3. The system with consideration of effect of backlash in the gears on the system.

4. The system with consideration of the linear responses.
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With the results in this work one can state that the used methods are generally suitable
for investigation of the torsional vibrations of drives of other types of arrangements.

REFERENCES

[1].

[2].

[3].
[4].
[5].
[6].
[7].
[8].
[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].
[18].

[19].
[20].

Kashay, A. M. 1973, Torque Amplification and Vibration Investigation Project, by
Iron and Steel Engineer July, PP. 55.

Timoshenko Young Weaver, 1974, Vibration Problems in Engineering, Fourth
edition, by John Willy and Sons, PP. 401 - 408.

Wright, J., 1976, Mill Drive System Design to Minimize Torque Amplification, by
Iron and Steel Engineer, PP. 56.
Wright , J., 1981, Tuning Mill Drives to Minimize Dynamic Torques, by Iron and
Steel Engineer, PP. 35.
Walker, D. N., 2007, Torsional Vibration of Turbomachinery by Duncan N. Walker,
PP. 65-80.
Herman, A. S. , Wright, J., 1969, Determination of Hot Strip Mill Torque
Amplification Factors, by AISE, Iron and Steel Engineer December, PP. 49.
Monaco, G., 1977, Dynamic of Rolling Mills Mathematical Models and Experimental
Results, by Iron and Steel Engineer, PP. 35.
Thomas, C. W. Jewik, H., 1969, Torque Amplification and Torsional Vibration in
large reversing Mill drive, by Iran and Steel Engineer, PP. 55.
Dukipati, R. V., 2005, Solving Vibration Problem by using MathLap, by RAO V.
Dukipati, PP. 20 - 60.
Harris and Crede, 1976, Shock and Vibration Handbook, by Mc Graw Hill, Inc., PP.
28-11t0 28 - 30.
Bernick, L.M. 1973, Roll Force Determination in Hot Rolling, by AISE, Iron and
Steel Engineer, March, PP. 40.

Bevan Thomas 1956 The Theory of Machines, Third edition by Longmans Green &
Co. Ltd. England, PP. 569 - 595.

Den Hartog , 1949, Strength of Materials, by Dover Publications, Inc. New York,
PP. 14-29.

H. Lavac, Z. 1986, Analyticko numericke metody Ladeni a optimalizace parametru
torznich tlumenych soustav, PP. 6 - 26.

Molnar A.J., 1981, Torque Amplification Factor Analysis and Tests on Two Bar
Mill Stands, by Iron and Steel Engineer, January, PP. 46.

Monaco, G, 1981 Modern Engineering Approach to Costly Drive System Problems,
by Iron and Steel Engineer, PP. 50.

Nestorides, E. J. 1958 A Handbook on Torsional Vibration, by Cambridge
University Press, PP. 150 - 193.

Pacas Kanicky, V, 1968, Mechanics of Machinery, by Military Technical College,
Cairo, PP. 273 - 285.
Van Santen,G.,1961, Mechanical Vibration, by Cloux Wallington, England, PP.15-35.
Mobely, R. K., 2004, Maintenance Fundamentals 2nd edition, by R. Keith Mabley,
PP. 30-41.

106



TUJINAS, 2011 A(4) 85-107

5 gall all) cliaclal A gilN) <l 3) 35a Y Jalas

e s - gl BS - ISl o

RS

Analysis of Rotary Winding Machines System ) s,sal Call wtsh aadsl LUE on ) Laall Lis jlas)
Sl o ey R ol Mg O e s 3 2L NS mae (3 AL (3 Bagmse S ads OF i 5 (
BB e Bl e Lol ) JUly ST S 2o o sl el 1 3 Bl lilly (1 1Sy sl
Jigol ) llaal

ob asW faes e o5l (REACHION ) ol 5) g o] Ll ooy 39l Gll) ST st pllad ) soledl) O
25 Sy J Ay o st U] 5252 S Slal OY ST jlissl el of spts on iy 2S5 f e o Y
Torsional Vibration ) syl syl e . aes, 78] dey aiad o aSW ey o lill ol of mal) (o W 50l
crmally cll e Lol b 335 Loty ety SlaSTol) Gty 1 gl . SIS a1 3 5l5aY) glaif 3 3,8 s ¥ (
Cinasg ol el e Aol o) degast ols e T8 aas¥1 ( DIV ) 841 (b e SLST ads plisiaa) 3

550l Ll ousU ((Analysis of Torsional Vibrations) asis¥i ciimsy el oo Leall 1is o bl
1Sl poe padnd L 5 S Bl S JSLie et ) (oog JUWL ol 4 pendl 001 0 (1) il el 2idy
Spread Torsional ) a8V amdall hssdl by (6F 25 (550,20 e «f (System Dynamic Torques) s
Fundamental ) ol¥ SV ol 538l aise old) Lt o) Vs L ol (Natural Frequencies
) OLgs s sise @ ((TOrsional Stiffness ) assy adal aess a3, ( Torsional Natural Frequency
3l sy NI oLl e ST (Flexibility ) wy soe ol 3l Gl 25l is;2 ( Lead Spindle Location
oY « ag,3¥1 ( Flexible Spacer ) al saslll alsanl syl o0 130 o ( Shaft  Separation) s>y spes b
. (Shaft Length ) 55y s Jsb ae LuSle mis 231391 ( Stiffness ) aslal
sl (Parameters) wdbtes s o 5 IS 13y Yol g sl Gll) aiSle ol J1INT SVl oy Luled

A els by 3ledl il sl (Components ):=Y ( The Real Set) aiati asged) jLaeVl pm 531 o sl
Differential ) slols w¥sles dsgoms Gy el e 4 S5 sl . ( Mechanical Model) S Jsse
adolidl SYslll aegas | 3loll Ll wlse pld (Mathematical Model) oub Jsdd (Ses g9 ( Equations
056 plisaal Walg] ¢ 13y el pladl ST (Equations of Motion) st Vst e sle o (ol 3 (1) dslas)
bgae @l Jaady 32 Alew 2i b Y (1 JACODI Method ) Gsie Jli aib plascal ¢ Vsl ods g (W1 s
Y Bl W Grols s (MathLab Program) .ok 2z, Ll lis 3 ozl ) a2l

NV 3 o et (3 ela Yl ey S5y BSW Glis) A S 5, w6l Sl WA iladly B Bl ag Tt
e

J

107



