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Abstract: 

In this work, we have built a detailed model of a prey-predator system with mechanical Allee rate and Hollings type II functional response. The model's 

positive accumulation points' existence, uniqueness, boundaries, and stability analysis are taken into consideration. Numerical simulations are used to discuss 

Allee's impact on system dynamics. 
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1. Introduction 
Population dynamics is one of the most popular topics in 

biomathematics. A particular area of interest has always been the 

evolution of different societies, from aggregations of single species to 

more realistic representations of the coexistence and interaction of 

numerous species within the same ecosystem. One of the most important 

and well-researched models for the interaction of living organisms is the 

prey-predator paradigm. Vito Volterra and Alfred J. Lotka were the first to 

introduce this approach in 1926 and 1925 respectively [1]. Since Allee and 

other scientists have studied these models, it has been possible to use 

systems of ordinary or partial differential equations to represent most 

predator-prey interactions. 

Allee discovered that a person's social desirability increases 

population growth, which increases density and consequently competition 

for resources [2]. This study was among the best studies that obtained 

benefits for population centers by concentrating resources in one place so 

that growth is conditional. The predator-prey paradigm of the avenue 

effect on prey growth has also attracted considerable interest. [3, 4, 5, 6, 7, 

8, 9]. Longxing Qi and Lijuan Gan also investigated Allee's effects on prey 

with shelter [10].  

In this research, we built a model consisting of a prey-predator, and 

it contains a response function of type II and Allee strong rate, and the 

study showed the effect of the Allee rate in the model. 

The Halling type II functional response in predator development: 

 
𝒅𝒙

𝒅𝒕
= 𝒙𝒉(𝒙) − 𝒚𝑩(𝒙) 

𝒅𝒚

𝒅𝒕
= 𝒚𝑩(𝒙) − 𝒇(𝒚)𝒅𝒚 

     

where ℎ(𝑥) = 𝑟 (1 −
𝑥

𝑘
) (𝑥 − 𝑏) and 𝐵(𝑥) =

𝑎𝑥

1+𝑥
 The beginning 

circumstances are x(0) and y(0) > 0. The prey population is represented 

by x, The predator population is represented by y, the predator mortality 

rate is represented by f(y), and the conversion efficiency of prey to 

predator is represented by c. K carrying capacity, h(x) per capita prey 

growth rate, r prey growth rate specific, b Allee effect threshold, B(x) prey- 

dependent functional response and a maximal attack rate are all 

represented. hence, we do: 

 
𝒅𝒙

𝒅𝒕
= 𝒓𝒙 (𝟏 −

𝒙

𝒌
) (𝒙 − 𝒃) −

𝒂𝒙𝒚

𝟏+𝒙
    , 

𝒅𝒚

𝒅𝒕
=

𝒄𝒙𝒚

𝟏+𝒙
− 𝒅𝒚                                   , 

all parameters are positive, the average predator loss rate is d. 

 

2. Existence of accumulation point 

In this part, we will just look at the system's coexisting accumulation 

point (1). If the following set of equations has a positive solution, a 

positive accumulation point 𝐸1 = (𝑥 ∗, 𝑦 ∗) exists and is unique within int. 

𝑅+
2    in xy space: 

 

𝒓 (𝟏 −
𝒙

𝒌
) (𝒙 − 𝒃) −

𝒂𝒚

𝟏+𝒙
= 𝟎  ,                                                         (1)                                   

𝒄𝒙

𝟏+𝒙
− 𝒅 = 𝟎                            ,                                                              (2) 

 

Here ∗=
𝑑

𝑐−𝑑
 , 𝑦 ∗=

1+𝑥∗

𝑎
(𝑟 (1 −

𝑥∗

𝑘
) (𝑥 − 𝑏)) , For a positive accumulation 

point, we have 𝑏 < 𝑥 ∗< 𝑘. 

 

3. Boundedness of the model 

Theorem (1): All of the system (1) solutions that start at 𝑅+
2    are 

uniformly bounded. 

Proof.  

 Assume that  (𝑥(𝑡), 𝑦(𝑡)) be any solution to the system (1) with the 

initial conditions (x(0), y(0)) being non-negative, describe the function:  

 

𝑴(𝒕) = 𝒙(𝒕) +
𝒂

𝒄
𝒚(𝒕) .                                                                      (3) 

 

Therefore, we are derivative equation (3),    
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𝒅𝑴

𝒅𝒕
= 𝒓𝒙 (𝟏 −

𝒙

𝒌
) (𝒙 − 𝒃) −

𝒂𝒙𝒚

𝟏+𝒙
+

𝒂

𝒄
(

𝒄𝒙𝒚

𝟏+𝒙
− 𝒅𝒚) , 

Now 0 ≤ 𝑥 ≤ 1 , we have: 

  
𝒅𝑴

𝒅𝒕
< 𝒓 (𝟏 +

𝒃

𝒌
) 𝒙𝟐 − 𝒃𝒓𝒙 −

𝒂𝒅

𝒄
𝒚 , 

𝒅𝑴

𝒅𝒕
< 𝒓 (𝟏 +

𝒃

𝒌
) − 𝒃𝒓𝒙 −

𝒂𝒅

𝒄
𝒚, 

𝒅𝑴

𝒅𝒕
= 𝑯 − 𝒏 𝑴. 

 

where  n = min  { 𝑏𝑟,
𝑎𝑑

𝑐
} , and 𝐻 = 𝑟 (1 +

𝑏

𝑘
) 

 

𝑴(𝒕) ≤
𝑯

𝒏
+ (𝑴(𝟎) −

𝟐

𝒏
) 𝒆−𝒏𝒕   .  

 

Thus  0 ≤ 𝑀(𝑡) ≤
2

𝑛
  ,as 𝑡 → ∞. As a result, the proof is successful since all 

solutions to system (1) are uniformly bounded.  

 

4. Local Stability Analysis 

       In this section, we study the local stability of the model (1) around 

positive accumulation points, and it is fairly simple to construct the 

Jacobian matrix J(x,y) of the system (1) by computing the Jacobian matrix 

J(x,y) and the eigenvalues of system (1) at each of them. 

 

𝑱𝟏 = 𝑱(𝑬) = (
𝒇𝟏 

𝒇𝟑

𝒇𝟐

𝒇𝟒
)     

where: 

𝒇𝟏 = −𝟐
𝒓

𝒌
𝒙 ∗𝟐+ 𝒓𝒙 ∗ (𝟏 +

𝒃

𝒌
) +

𝒂𝒙 ∗ 𝒚 ∗

(𝟏 + 𝒙 ∗)𝟐        , 𝒇𝟐 =
−𝒂𝒙 ∗

𝟏 + 𝒙 ∗
 

 𝒇𝟑 =
𝒄𝒚 ∗

(𝟏 + 𝒙 ∗)𝟐           ,    𝒇𝟒 = 𝟎 

 

Then the distinctive equation of  𝐽(𝐸1) is given by: 

 

𝝀𝟐 + 𝑼𝟏𝝀 + 𝑼𝟐 = 𝟎,   where    𝑼𝟏 = −𝒇𝟏 , 𝑼𝟐 = −𝒇𝟐𝒇𝟑         ,      

 

Thus, we have the following conclusions: 

 

a) If 𝑼𝟏 < 0 (i.e. 𝟐
𝒓

𝒌
𝒙 ∗> 𝒓 (𝟏 +

𝒃

𝒌
) +

𝒂𝒚∗

(𝟏+𝒙∗)𝟐
 ), then the positive 

accumulation is locally asymptotically stable.  

b) If 𝑼𝟏 > 0 (i.e. 𝟐
𝒓

𝒌
𝒙 ∗< 𝒓 (𝟏 +

𝒃

𝒌
) +

𝒂𝒚∗

(𝟏+𝒙∗)𝟐
 ), then the positive 

accumulation is unstable. 

 

5. Global stability 

Theorem: The following conditions apply: 𝑠1 < 𝑠2 , 0 ≤ 𝑥 ≤ 1 and 𝐸  

is locally asymptotically stable. In this case 𝐸 is globally asymptotically 

stable.  

Thus, 

 

 𝒔𝟏 = 𝒓(𝒙 − 𝒙 ∗) ((𝟏 −
𝒙

𝒌
) (𝒙 − 𝒃) − (𝟏 −

𝒙∗

𝒌
) (𝒙 ∗ −𝒃)) , 𝒔𝟐 = 𝒓𝒂𝒚 ∗

(𝒙 − 𝒙 ∗)(𝟏 − 𝒙 ∗), 

 

Proof:  

Consider the following function: 

 

𝑮(𝒙, 𝒚) = ( 𝒙 − 𝒙 ∗ − 𝒙 ∗  𝒍𝒏
𝒙

𝒙∗
 ) +

𝒓𝒂

𝒄
(𝒚 − 𝒚 ∗ − 𝒚 ∗  𝒍𝒏

𝒚

𝒚∗
). 

𝑮(𝒙, 𝒚)𝝐 𝑪𝟏(𝑹+
𝟐 , 𝑹) ,  𝑮(𝑬) = 𝟎 , and   𝑮(𝒙, 𝒚) > 𝟎 ; 

 

∀(𝑥, 𝑦) ≠ 𝐸 . Now differentiate 𝐺 from time t onwards and do some 

algebraic work taking this into account: 

 

𝒅𝑮

𝒅𝒕
= 𝒓(𝒙 − 𝒙 ∗) ((𝟏 −

𝒙

𝒌
) (𝒙 − 𝒃) −

𝒂𝒚

𝟏 + 𝒙
− (𝟏 −

𝒙 ∗

𝒌
) (𝒙 ∗ −𝒃)

+
𝒂𝒚 ∗

𝟏 + 𝒙 ∗
) + 𝒓𝒂(𝒚 − 𝒚 ∗)(

𝒙

𝟏 + 𝒙
−

𝒙 ∗

𝟏 + 𝒙 ∗
) 

 

𝒅𝑮

𝒅𝒕
≤ 𝒓(𝒙 − 𝒙 ∗) ((𝟏 −

𝒙

𝒌
) (𝒙 − 𝒃) − (𝟏 −

𝒙 ∗

𝒌
) (𝒙 ∗ −𝒃))

− 𝒓𝒂(𝒙 − 𝒙 ∗) (
𝒚

𝟏 + 𝒙
+

𝒚 ∗

𝟏 + 𝒙 ∗
)

+ 𝒓𝒂(𝒚 − 𝒚 ∗) (
𝒙

𝟏 + 𝒙
−

𝒙 ∗

𝟏 + 𝒙 ∗
), 

 

𝒅𝑮

𝒅𝒕
≤ 𝒓(𝒙 − 𝒙 ∗) ((𝟏 −

𝒙

𝒌
) (𝒙 − 𝒃) − (𝟏 −

𝒙 ∗

𝒌
) (𝒙 ∗ −𝒃)) − 𝒓𝒂𝒚

∗ (𝒙 − 𝒙 ∗)(𝟏 − 𝒙 ∗). 

𝒅𝑮

𝒅𝒕
= 𝒔𝟏 − 𝒔𝟐. 

 

6. Numerical simulation 

We numerically simulate the aforementioned theoretical reasoning 

in this part. by MATLAB. 

6.1 Strong Allee effect 
The ODE model (1) has four parameters: r ,k , b, a , c, d. We choose the 

parameters: 

 

Table 1: The parameters (r, k, b, a, c, and d) of the ODE model (1). 

Index 
Parameter 

r k b A C d 

1 0.9 0.8 0.01 0.8 0.7 0.2 

2 0.9 0.8 0. 1 0.8 0.7 0.2 

3 0.9 0.8 0.01 0.8 0.5 0.2 

 

 

 

 
Figure 1: The periodic trajectories of the system. 

 

 

 

 

 

 

 
Figure 2: Trivial point of the system. 
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Figure 3: shows asymptotically stable of E = (x∗, y∗) = (0.666, 0.201). 

 

According to Figure 1, we can find the system has periodic trajectories if 

we take set 1 in table and all conditions of local stale are hold. If we take 

set 2, then the system has trivial point as shown in Figure 2. If we take the 

set of parameters 3, then E = (x∗, y∗) = (0.666, 0.201) is asymptotically 

stable as shown in Figure 3. 

7. Conclusions 

In this article, a predator-prey paradigm is described with an Allee 

effect in prey growth, and a functional type II response to Holling in 

predator growth the system was studied in detail analytically for the 

positive equilibrium point. The existence of this point depends on the 

fulfillment of the following condition 𝑏 < 𝑥 ∗< 𝑘, and it is stable locally if 

the condition is fulfilled 𝑈1  <  0 , and when the conditions for existence 

and stability are met locally and the following condition 𝑠1 < 𝑠2, the 

positive point is globally stable. The study of the effect of the strong 

mechanism on the system made the parameter b possess characteristics 

that change the behavior of the system, so when we took the group (1) in 

the table, we observed that the system has a periodic cycle as shown in 

Figure 1, and we maintained that when the value of the parameter 

changed (b), Observing the behavior of the system changed suddenly, and 

we obtained the Figure 2, in both cases, all parameters were constant. 

While when the value of parameter (b) was constant and the value of the 

predation rate changed, the behavior of the system also changed, and we 

obtained a globally stable point. We can say, after studying the system, 

that the rate of change Allee plays a major role in the stability of the 

system. 
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