
 
  

 

 |91 

 مجلــــة العلـوم
 والتقنية الهندسية

 
 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو،  الأول ، العـــــــــــدد: الثالثالمجــلد:   

 

Approach to Plagiarism Detection in Programming Assignments 

Malek Algabri1,2, Firdaus Alhrazi1 

1College of Computer Science and Technology, Sana’a University 

2College of Engineering and Information Technology, Emirates International University, Sana’a, Yemen 

malekye@su.edu.ye, dr.malekye@eiu-edu.net , firdaus.mansoor2024@gmail.com 

  

 

 
 

 

 

 

 

Abstract: 

People tend to shortcut ways that save them time and effort to do the tasks 

required by them, either by taking tasks ready-made online, or stealing someone’s 

work as their own. Since                everything now is connected to the Internet, there is a very 

high potential of duplicating or stealing someone else’s work, which is known as 

plagiarism. With the advancement of technology, it has become quite simple to do all 

tasks through the Internet. Plagiarism is the copying of other people’s ideas and 

actions; it  is considered a crime. Plagiarism occurs due to laziness, fear of failure, and 

the desire to perform the required tasks without fatigue or effort. In this paper, a 

methodology for detecting plagiarism in programming tasks, in particular in the visual 

programming category using deep learning and machine learning algorithms is 

proposed. Also, a solution has been proposed to detect plagiarism in the source code 

and interfaces that pertain    to programming assignments. 

Keywords: Index Terms Plagiarism Detection, Programming Assignments, Ma 

chine Learning, CNN, MILEPOST GCC. 

 

 

 

  

D HIS WORK IS LICENSET

REATIVE CUNDER A 

TTRIBUTION AOMMONS C

NTERNATIONAL I 4.0

.ICENSEL 

 

mailto:firdaus.mansoor2024@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 
 

 

    |92 

 2023 مارس

 مجلــــة العلـوم
 والتقنية الهندسية

 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو، الأول ، العـــــــــــدد: الثالثجــلد: الم  

I. INTRODUCTION 

Plagiarism detection is useful in the era of technological development. Plagiarism detection helps to 

maintain integrity in the academic field, as it is easy to copy or steal the works of others via the Internet. 

Most people tend to steal or copy someone’s work to save effort and time in getting the costs or work 

required of them done. If people continue to steal the works of others, the original work will not be 

valuable at all. Plagiarism in programming tasks is a big problem, where students copy codes from their 

classmates, or find codes online and utilize them without indicating to original code [ 1] .   

There are many plagiarism detection tools, and these tools have greatly reduced manual checking. Most 

plagiarism de- tection tools use syntactic-based methods and a text-based ap- proach [2]. These tools tend 

to fail when the code obfuscation process is done. In programming tasks, code obfuscation can be done by 

changing variable names, rearranging sentences, replacing loops and control sentences, converting 

variables, and adding comments. 

It is very difficult to identify copied work in programming languages because there are different types of 

plagiarism, which are difficult to find with plagiarism detection tools. Tools like JPlag [3] and MOSS [4] 

remove comments before testing for plagiarism, which can lessen their importance for plagiarism detection. 

There are different types of plagiarism 

[5] such as direct plagiarism, smart plagiarism, self-plagiarism, and unintentional plagiarism. Direct 

plagiarism is copying without any change or quotations. Smart plagiarism is when someone plagiarizes 

an original work skillfully, they rephrase sentences in their way. Self-impersonation is when someone 

presents the same as their previous work in other situations and tasks. Unintentional plagiarism where this 

type occurs when someone inadvertently reformulates a topic [5 ] .   

In this paper, the focus will be on plagiarism detection of source code and interfaces in visual 

programming class. The goal is to solve the problem of plagiarism in students’ software tasks. 

II. RELATED WORK 

Most universities use online code evaluation platforms [6], making plagiarism an easy task in 

programming tasks. Imper- sonation in general in the field of education is considered a betrayal of 

academic honesty and a moral crime. There are two ways to detect plagiarism [ 5 ] :  

• Document plagiarism. 



 
  

 

 |93 

 مجلــــة العلـوم
 والتقنية الهندسية

 
 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو،  الأول ، العـــــــــــدد: الثالثالمجــلد:   

• Source code plagiarized. 

A. Existing Tools 

• Tools for detecting plagiarism online: 

An online plagiarism detector is a tool that takes text or documents as input and checks or 

compares them with several articles and papers published that have been published online. It 

produces a report at the end for reference that shows the proportion of information that has been 

plagiarized [ 5] .   

• Independent tools for detecting plagiarism: 

Unlike online plagiarism services, plagiarism detection apps may be installed and used on 

individual PCs and are used to check for plagiarism in specified input texts or documents. To find 

text matches, it does a huge amount of internet searches using articles. For these resources to work, 

the device must be connected to the Internet [5] .   

B. Plagiarism Detection for Source code and Texts 

Based on a survey [7] of computer undergraduate students, 54% admitted plagiarizing and over 87% 

reported that their assignment was plagiarized. According to article [8] students cheat for a variety of 

reasons, including the ease with which 

they may access or exchange material online, the low like- lihood of being discovered, a lack of time, a 

fear of being judged, and so on. As a result, when students complete the course, they are deficient in 

important knowledge, and their entitlement to a fair and equal evaluation of their expertise is denied. Due 

to the large number of students in each course, educators rely on assignments to determine which students 

need further help and whether the course can be made better [6].  

C. Detection of Source Code Plagiarism 

Source code plagiarism occurs when someone copies or reproduces the same source code without 

properly citing the original source code author [5]. There are two methods available: 

• Syntaxial Change 

The shift is the simplest form in syntaxial. They may be completed by making a few straightforward 

adjustments to the main code. In this situation, knowing how to code is not necessary [ 5] .   

• Structural Change 



 
 

 

    |94 

 2023 مارس

 مجلــــة العلـوم
 والتقنية الهندسية

 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو، الأول ، العـــــــــــدد: الثالثجــلد: الم  

Changes to calls made within the process body and vice versa, changes to iterations, conditional 

statements, and statement order, as well as the conversion of procedures to works and the inclusion 

of statements that will not modify the code’s output are all instances of structural changes [ 5] .   

D. Process Model for Plagiarism Detection 

An enhancement to the process model used to identify plagiarism. Five phases make up the comparable 

model seen in [ 1] :   

• By tokenizing the source code, detection becomes re- sistant to changes in the source code’s 

structure, like language translations and variable renaming. 

• Pre-processing improves the detection of source code changes such as removing comment blocks, 

splitting or merging variable declarations, rearrangement of state- ments, etc. 

• deleting and creating a tokenized version of source code that is allowed. 

• Utilizing similarity measurement to find similarities. 

• Finally, calculating the amount of similarity between two source codes. 

E. Detecting Source Code Plagiarism Bytecode Approach 

A technique for detecting source code plagiarism that uses low-level instructions instead of source code 

tokens may catch the majority of plagiarism assaults from beginner pro- gramming courses at any level. 

Additionally, a number of techniques, including instruction reinterpretation, instruction generalization, 

method linearization, and method-based com- parison are incorporated to increase its efficacy. The choice 

of Java as the targeted programming language with Bytecode as its low-level instruction was made, due to 

low-level instruction being a language-dependent characteristic based on analysis 

[9]. Most source code plagiarism detection tools are created with language independence in mind. This 

kind of approach generalizes all computer languages and treats them as raw text, assuming that the most 

obvious plagiarism indications are not language-dependent [10]. Suggest a controlled experiment to 

gather plagiarism assaults because more accurate plagiarism detection may be built if the most likely 

plagiarism attacks are identified and reported. Based on 378 source codes created by respondents who 

stole work, we investigate potential plagia- rism assaults in a controlled experiment. Respondents are only 

allowed to be skilled programmers from different courses in order to gather more diverse plagiarism 

attacks. Additionally, the majority of them are trained to spot plagiarism in students’ homework as lecturer 

assistants. 



 
  

 

 |95 

 مجلــــة العلـوم
 والتقنية الهندسية

 
 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو،  الأول ، العـــــــــــدد: الثالثالمجــلد:   

F. Source Code Plagiarism Detection using Machine Intelli- gence Approach 

There are several methods available to assist preserve the requisite integrity and identify plagiarism. 

where it deals with plagiarism in a particular category of C programming tasks. The benefits and drawbacks 

of various deep learning and Machine Learning techniques are thoroughly examined. To identify 

plagiarism in source code, algorithms like SVM, KNN, RNNs, D-Trees, and attention-based transformer 

net- works are put to the test. During the course of this investigation, a large dataset made up of code 

pairings was created. The results collected demonstrate that the state-of-the-art text-based plagiarism 

detectors used today are not as accurate at identifying plagiarism as machine learning and deep learning 

approaches [ 2] .   

The authors in [ 1 1 ]  use feature-based neural networks to   try to detect plagiarism. They analyze 

the usefulness of the various characteristics for identifying plagiarism and use a neural network approach 

to detect plagiarism. The similarity provided by MOSS is employed as one of the characteristics of their 

method and is also demonstrated to have the highest significance. 

The authors in [12] go through various Machine Learning approaches to plagiarism detection. The 

outcomes of several experiments are used to illustrate them. Result of testing several machine learning 

techniques on feature pairings, conclusions are drawn. 

III. METHODOLOGY 

To detect plagiarism in source code and interfaces in visual programming, a methodology consisting of 

steps is proposed, which are as follows: 

A. Dataset Preparing 

There is the study [2] was done before the dataset is created. conducted to create a dataset containing 

pairs of plagiarized and non-plagiarized programs, and different methods were   used to obfuscate the 

source code, and then collect programs from various tutorials and online platforms. In this section, the  

dataset will be used in the study [2], and data augmentation will be introduced. 

Here, different techniques for code obfuscation were utilized to provide a sufficient dataset that could 

accommodate a   range of potential instances of source code and interface theft. Programs were gathered 

from schoolwork assignments, various tutorials, and from internet coding platforms to include a range of 

source codes and interfaces. Out of them, 519 pairs included plagiarism, whereas the remaining 722 pairs 

did not. Pair of copied source codes and interfaces that had been obfuscated using well-known methods. In 



 
 

 

    |96 

 2023 مارس

 مجلــــة العلـوم
 والتقنية الهندسية

 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو، الأول ، العـــــــــــدد: الثالثجــلد: الم  

order to make the dataset impenetrable against a range of problem sets, it was made sure that a variety 

of strategies were incorporated where 

the different code obfuscation methods are as follows: 

• Change in Data Types. 

• Change in Variable Name. 

• Changing from For Loop to While Loop. 

• Rearranging the Statements. 

• Coding Block Reordering. 

• Expression Reordering. 

• If Else converted statements. 

• Change colors in interfaces. 

• Change the order of tools in interfaces. 

To detect plagiarism in visual programming, we must take two approaches. First, plagiarism detection in 

source code. Second, plagiarism detection in the interfaces. Below are more details. 

B. Textual Feature Extraction for Source Code 

In this approach, plagiarism of source code will be detected by extracting features from source code using 

machine learn- ing. The following is the plagiarism detection mechanism. 

To extract features from a source code MILEPOST GCC with O3 was utilized [13]. A machine learning 

compiler called MILEPOST GCC is used for testing and research. The scale of each characteristic ranged 

from zero (the least value) to one (the greatest value). 

In [2] Support Vector Machine (SVM), K Nearest Neighbors (KNN), and Decision Trees were the 

classification techniques employed on the condensed dataset. The next sections show how these 

algorithms are implemented and the accuracy that may be attained using them. The weights assigned based 

on the distance between the 7 nearest neighbors were taken into account when the K Nearest Neighbors 

algorithm was developed. The Gini Index served as the foundation for the Decision Trees Classifier method 

that was used. The maximum                 depth was 4, and the minimum number of leaves for the sample                   was five. 

Support Vector Machine (SVM) was the most recent   algorithm used. The Grid Search Technique was used 

to get the SVM model’s ideal parameters[1 4] .   

C. Image Feature Extraction for Interface 



 
  

 

 |97 

 مجلــــة العلـوم
 والتقنية الهندسية

 
 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو،  الأول ، العـــــــــــدد: الثالثالمجــلد:   

In this approach, plagiarism of interfaces will be detected by extracting features from interfaces as 

images using a Convolutional Neural Network (CNN). The following is the   plagiarism detection 

mechanism. 

When using traditional feed-forward neural networks to handle picture classification issues, image pixels 

might be 

utilized directly as input. Compared to conventional fully connected neural networks, CNN networks are 

significantly quicker and more reliable [15]. The CNN model has excelled in a variety of computer vision 

tasks, including image process- ing. Additionally, we may utilize the CNN model to extract the features. 

pull features from various network levels for                       use in other tasks. In general, global feature extraction 

based on CNN consists of feature extraction, pretraining the CNN model, and fine-tuning the CNN model 

[ 1 6] .   

The feature extraction pooling layer and convolution layer are two different types of network layers in 

the CNN model. To extract various picture information, the convolution layer convolves input data using 

several convolution kernels. The pooling layer samples the data coming in. The activation function then 

nonlinearly abstracts input information. After entering the CNN model, the original picture moves ahead 

through pooling, multi-layer convolution, and non-linear addressing. Additionally, the picture data is 

continuously abstracted. The final output, characteristics increasingly abstract from low- level semantic 

data to local specifics [16]. As a result, the CNN model has more low-level data and higher-level semantic   

information the closer it is to the input convolution layer and full connection layer, respectively. 

In this step, the focus will be on the detection of plagiarism in the software interfaces, as students may 

perform plagiarism operations for the software interfaces, the solution is to use CNN so as to detect 

plagiarism between the interfaces. Through CNN the features of the interfaces will be extracted, and then 

the features extracted from the interfaces to be detected for plagiarism will be compared with the dataset 

created in advance in the first step. The result of this comparison will be calculated as a percentage of the 

amount of difference between the interfaces to be examined and the previously   prepared dataset. 

IV. RESULT   AND   DISCUSSION 

Using machine learning and deep learning, an algorithm was created to identify interface and source 

code plagiarism. By contrasting them and determining the proportion by utilizing the Machine Learning 

algorithm and CNN, we can determine the amount of plagiarism that has been done in visual pro- 

gramming. 



 
 

 

    |98 

 2023 مارس

 مجلــــة العلـوم
 والتقنية الهندسية

 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو، الأول ، العـــــــــــدد: الثالثجــلد: الم  

Figure. I shows the performance of our method when compared to MOSS and JPlag. The blue bars 

represent the performance of our method, and the red bars represent MOSS and yellow JPlag. 

We can find the amount of plagiarism performed on a pro- gram by comparing the source code and interfaces in 

the pro- gram and calculating the amount of percentage of the amount of difference between the program and the 

programs stored in the dataset prepared for this task regarding the source code, the percentage of difference is 

calculated by Machine Learning and the percentage of the difference between interfaces by CNN’s deep learning 

algorithms. Plagiarism is verified by taking outputs and calculating the average percentages to find the final 

plagiarism percentage. After training on source code data [2], the results were tested on a test suite including 496 

programs, which was processed into 248 pairs. The top level of accuracy was obtained using the SVM model. The 

details obtained for each model are given in Table.  I. 

Model Accuracy 

SVM 97.42% 

D-Trees 96.35% 

KNN 96.95% 

Proposed Work 98.95% 

TABLE I 

ACCURACY OF CLASSIFIER MODELS 

    A simple Convolutional Neural Network has also been pro- posed to detect plagiarism in the interface by classifying 

images. This was done by taking the features of the interfaces and comparing them with the data in the dataset; then 

calculating    all the proportions of differences between the data stored in   the dataset and the interface that is 

required to be examined, and after that calculating the average of differences between those interfaces. In 

addition, in this methodology, interfaces are treated as images. This simple Convolutional Neural Network imposes a 

lower computational cost as well as better results, which is what distinguishes the methodology in this paper 

compared to plagiarism detection tools. 

 
Figure I 

Performance of our method when compared to MOSS and JPlag 



 
  

 

 |99 

 مجلــــة العلـوم
 والتقنية الهندسية

 
 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو،  الأول ، العـــــــــــدد: الثالثالمجــلد:   

V. CONCLUSION AND FUTURE WORK 

     Academic dishonesty is defined as plagiarism. Even though stealing someone else’s work is legal,  it may 

still violate their copyright. It is a serious, unethical infraction in academia. The law does not penalize 

plagiarism. Plagiarism is defined as using someone else’s words or ideas without their permission or 

referencing the actual author of the material in order to pass it off as your own. This study was done on the 

application of deep learning and machine learning algorithms for plagiarism detection shows significant 

promise. Compared to earlier techniques, these new algorithms are far more potent. There is an opportunity 

to strengthen the algorithms, though. Future promises may include creating a tool that uses machine 

learning methods to show precisely where code noise occurs. Utilizing the Bag of Words algorithm to 

identify plagiarism is a further research field. There may be further techniques to obtain dynamic features 

from the program that can spur more advancement in this particular field and lengthen the useful life of 

plagiarism detection. 

REFERENCES 

1. Kermek, D. and M.J.I.i.E. Novak, Process model improvement for source code plagiarism detection in student programming 

assignments. 2016. 15(1): p. 103-126. 

2. Eppa, A. and A. Murali. Source Code Plagiarism Detection: A Machine Intelligence Approach. in 2022 IEEE Fourth 

International Conference on Advances in Electronics, Computers and Communications (ICAECC). 2022. IEEE. 

3. Prechelt, L., G. Malpohl, and M.J.J.U.C.S. Philippsen, Finding plagiarisms among a set of programs with JPlag. 2002. 8(11): p. 

1016-. 

4. Schleimer, S., D.S. Wilkerson, and A. Aiken. Winnowing: local algorithms for document fingerprinting. in Proceedings of the 

2003 ACM SIGMOD international conference on Management of data. 2003. 

5. Yasmeen, S., et al. Plagiarism Detection for Source Codes and Texts. in Sentimental Analysis and Deep Learning: 

Proceedings of ICSADL 2021. 2022. Springer. 

6. Alexandra-Cristina, C. and A.-C. Olteanu. Material survey on source code plagiarism detection in programming courses. in 

2022 International Conference on Advanced Learning Technologies (ICALT). 2022. IEEE. 

7. Sraka, D. and B. Kaucic. Source code plagiarism. in Proceedings of the ITI 2009 31st international conference on 

information technology interfaces. 2009. IEEE. 

8. Albluwi, I.J.A.T.o.C.E., Plagiarism in programming assessments: a systematic review. 2019. 20(1): p. 1-28. 

9. Karnalim, O. Detecting source code plagiarism on introductory programming course assignments using a bytecode 

approach. in 2016 International Conference on Information & Communication Technology and Systems (ICTS). 2016. IEEE. 

10. Brixtel, R., et al. Language-independent clone detection applied to plagiarism detection. in 2010 10th IEEE Working 

Conference on Source Code Analysis and Manipulation. 2010. IEEE. 

11. Engels, S., V. Lakshmanan, and M. Craig. Plagiarism detection using feature-based neural networks. in Proceedings of the 

38th SIGCSE technical symposium on Computer science education. 2007. 

12. Katta, J.Y.B., Machine learning for source-code plagiarism detection. 2018, International Institute of Information 



 
 

 

    |100 

 2023 مارس

 مجلــــة العلـوم
 والتقنية الهندسية

 جامعة ذمار –تصدر عن كلية الهندسة وكلية الحاسبات والمعلوماتية  -مجلة علمية محكمة 

 ISSN: 2958-809X          EISSN: 2958-8103 2024 يونيو، الأول ، العـــــــــــدد: الثالثجــلد: الم  

Technology Hyderabad, University of …. 

13. Fursin, G., et al. MILEPOST GCC: machine learning based research compiler. in GCC summit. 2008. 

14. Platt, J.J.A.i.l.m.c., Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. 

1999. 10(3): p. 61-74. 

15. Li, Q., et al. Medical image classification with convolutional neural network. in 2014 13th international conference on 

control automation robotics & vision (ICARCV). 2014. IEEE. 

16. Peng, X., et al., Research on image feature extraction and retrieval algorithms based on convolutional neural network. 

2020. 69: p. 102705. 

 

  


