oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

Validating Quality Metrics of State Machine Models
Ammar Osaiweran

Faculty of Computers and Informatics, Thamar University, Thamar, Yemen
ammar.osaiweran@tu.edu.ye

THIS WORK IS LICENSED UNDER A CREATIVE
COMMONS ATTRIBUTION 4.0 INTERNATIONAL

LICENSE.

2024 poiiw « S isaall S il el

Abstract:

Software metrics are widely used to measure the
quality of software and to give an early
indication of the efficiency of the development
process in industry. There are many well-
established frameworks for measuring the
quality of source code through metrics, but
limited attention has been paid to the quality of
software models. In this article, we introduce
new metrics that are tailored to measure the
quality of models of state machines and then
apply the metrics to evaluate the quality of state
machine models specified using the Analytical
Software Design (ASD) tooling. We discuss
how we applied a number of metrics to ASD
models in an industrial setting and report about
results and lessons learned while collecting
these metrics. Furthermore, we recommend
some quality limits for each metric and validate
them on models developed in a number of real
industrial projects. This paper extends [19] by
providing a formal and empirical validation of
the metrics and their related limits. The results
of our work provide a framework to measure the
quality of state machine models, developed in
ASD, and give a basis for future research on
introducing quality metrics for other type of
models of which quality metrics are missing.

Keywords: Software engineering, Model-based
development, software quality, = Model
ttransformation, Software development

ISSN: 2958-809X EISSN: 2958-81 om

mailto:ammar.osaiweran@tu.edu.ye
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

1. Introduction

The use of model-based techniques in software development processes has been
promoted for many years [15,2,7,3]. The aim is to use the models as the main software
artifacts in the development process, not only for visualization and communication
among developers, but also as means of specification, formal verification, code
generation, testing and validation.

In traditional development, source code is the main software artifact. To measure
the quality of source code, a number of widely used metrics are utilized, with well-
established industrial strength tools and frameworks, such as TICS [17], CodeSonar [4]
and VerifySoft [19]. Code metrics are useful means to detect decays and code smells [9]
that hinder future evolution and maintenance.

However, these frameworks and tools cannot be applied directly to measure the
quality of models. They can measure the generated code, but it is debatable whether this
is meaningful. This is because, usually, code generators generate correct and optimal
source code tailored to a specific domain and the generated code is often excluded from
code analysis tools due to violations and non-adherence to the prescribed coding
standards. Therefore, complexity, duplication and other undesired properties must be
analysed at the level of models. Since industry is becoming more reliant on software
models, there is an urgent need to establish a way for measuring various metrics at the
level of models and not at the level of source code.

In our industrial context, we use state machines to design and specify reactive and
control aspects of software using a lightweight formal modeling tool called ASD: Suite
[18]. The tool allows modeling of state machines in a tabular format. These models can
be formally verified and corresponding source code can be generated from these models.
Because there are no means to measure the quality of these models, a number of
challenging questions are raised. How can we evaluate the quality of this type of state
machine models? Are some of the models developed in early projects in our industrial
setting overly complex? Which factors contribute to the complexity of models? How can
these factors be detected and measured? How can we help engineers to improve the
quality of their future models? How can we provide to modelers information on
deterioration as their models evolve?

In this paper we provide answers to the above questions by utilizing a number of
software metrics that we tailored and adapted for measuring the quality of ASD models.
Another challenging research question is how to validate the correctness of these metrics
with respect to the perception of software engineers who developed the models. This is
because a complex model from a perspective of an engineer may be observed as a simple
model by another engineer. To address this challenge, we conducted validation and
verification steps to proof the soundness of the metrics using empirical and formal
validation steps. The validation also includes the proposed thresholds of the metrics [20].

119 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

This paper extends a previously published article [19] with these validation and
verification steps of the metrics.

The paper is structured as follows. Section 2 discusses related work on metrics of
state machines. Section 3 introduces ASD to the extent needed for this article. In Section
4 a number of well-known software metrics are detailed with the application to ASD
models. Section 5 introduces recommended limits of metrics for good quality models.
Section 6 details the data collection process of metrics from models and discusses
observations during the data analysis. In Section 7 we detail out the verification and
validation steps formally and empirically. In Section 8 we conclude our paper
highlighting the limitations of our metrics and future work in this regard.

2. Related Work

In previous research at Philips Healthcare [16], guidelines for readability and
verifiability of ASD models were introduced. An important guideline is for instance: an
ASD tabular model should not include more than 250 rows leading to not more than 3000
lines of generated code. The limitation of this guideline is that it considers only the size of
models and generated code while no other complexity factors were addressed. To
estimate the reliability of UML state machines, and to identify failure-prone components,
a group of authors [12] measured the cyclomatic complexity of UML state machines.
They did not measure the CC directly on state machines, but on the control flow graph
generated from their software realization. Similarly, other authors focus on assessing the
number of tests. For example, in [8] decision diagrams as intermediate artifacts were used
to calculate the number of tests for the code of concurrent state machines. In [25] they
provide a metric based on complexity rate for each element in the state machine model
but they did not provide metrics to evaluate the entire state machine from different
aspects. In [26], the authors surveyed quality metrics of requirements in Agile and rapid
development but they did not consider metrics and quality of models in their study.

3. ANALYTICAL SOFTWARE DESIGN

This section provides a short introduction of the ASD approach and its toolset, the
ASD: Suite [18]. Using the ASD: Suite, models of components and interfaces can be
described. Two types of models are distinguished which are both state machines specified
by a tabular notation: ASD interface models and ASD design models.

The external behaviour of a component is specified using an interface model which
excludes any internal behaviour not seen by client components that use the interface. The
interface model is implemented by a design model which typically uses the interfaces of
other so-called server components.

An ASD component includes an implemented interface model, a design model,
and optional server interface models. Formal verification is established by verifying that
calls in design models to interfaces of server components are correct, with respect to
contracts of the servers. For this ASD uses CSP/FDR2 [11], [6] for model checking by

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SNIEAY)

oglefld 1o
A, 18110 &y waiml

Sled daale — Alaglally bl 289 2uwatic) 28 (e jint - LeSmn Ligiuw cdimi duole AUsza

exhaustively searching for illegal interactions, deadlocks or livelocks in the behaviour. It
is also formally checked whether the behaviour of the design model obeys its
implemented interface model.

The ASD tool also provides the modeler with elementary metrics related to the
generated state space such as the number of states and transitions and the time required
for verification in seconds. Besides formal verification, the ASD: Suite allows code
generation to a number of languages (C, C++, C#, Java).

system_on() .
system_off()

— Door
Control

Fig. 1. Example controller system of automatic door

In ASD, a client issues synchronous calls to server components, whereas a server
sends asynchronous callbacks to its clients. These callbacks are non-blocking and can be
received by a component at any time.

We detail the ASD specification by using a small automatic Door controller
example. It consists of a Door controller component that controls a Sensor and a Motor
component, see Figure 1. The Controller receives two requests from external clients,
namely systemOn to start-up the system and systemOff to shutdown the system. When the
system is ON, the controller may receive a callback from the sensor component when
there is a detected object. Upon such an event, it issues a command to the motor
component to open the door and apply a brake. Then it starts a timer and when it times
out the controller issues a command to release the brake to close the door. This example
is used to clarify and illustrate the interface model in Section 3.1 and the design model in
Section 3.2.

3.1 ASD Interface Models

The interface model is the first artifact that must be specified when creating an
ASD component. It describes the external behavior of the component by means of the
allowed sequence of calls and callbacks, exchanged with clients. Any internal behavior
not visible to clients is abstracted from the interface specification.

Figure 2 depicts the tabular specification of an ASD interface model. The
specification lists all implemented interfaces, their events (also called input stimuli),
guards or predicates on the events. A sequence of response actions can be specified in the

121 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

5o Zaal — Ailaglally bl 2S5 Aol S (e jiad - LeSoms Hugise it Znole Ala

Actions list such as return values or callbacks to clients, and special actions such as
Illegal which essentially marks the corresponding event as not allowed in that state.

In Figure 2 the interface specification of the Door controller is described. The
model contains two states: Off and On. Any ASD model must be complete in the sense
that actions for all input stimuli events must be defined in every state. For example, in
row 3 a systemOn event is accepted and the component will transit to state ON after
returning a voidReply to IDoorControlAPI. In row 4 and 7 of Figure 2 the Illegal action is
specified denoting that invoking the event is forbidden by clients. Once in the On state,
the component accepts a systemOff request and transits back to the Off state. Similarly,
Figure 3 depicts the external behavior of the

Interface IEvent lGuard lActions IStateITarget State
1| Off (initial state)
3 | IDoorControlAPI | systemOn IDoorControlAPI. \bidReply On
4 | IDoorControlAPI | systemOff Illegal -
5/0n
7 | IDoorControlAPI | systemOn Illegal -
8 | IDoorControlAPI | systemOff IDoorControlAPI. \bidReply Off

Fig. 2. Interface model of door controller

Sensor hardware component, which is strictly alternating between the Active and
Inactive states via the startSensing and stopSensing events. In row 10, a so-called internal
event is specified denoting that something internal in the device can happen, which is in
this case a detectedMovement. As a consequence, the detectedObject callback is sent to
the controller and the Sensor remains in the Active state. Via internal events, the interface
abstracts from one or more actions that happen internally in the implementation.

Interface IEvent IGuard IActions lStat-lTarget StateJ
1 | Inactive (initial state)
3 |ISensor startSensing ISensor. \bidReply Active
4 |ISensor stopSensing Illegal =
6 |Active
8 ISensor startSensing Illegal -
9 |ISensor stopSensing ISensor. \bidReply Inactive
10 | ISensorINT | detectedMovement ISensorNI.detectedObject Active

Fig. 3. Sensor interface model

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SN

oglefld 1o
A, 18110 &y waiml

Sled daale — Alaglally bl 289 2uwatic) 28 (e jint - LeSmn Ligiuw cdimi duole AUsza

The ASD design model implements the interface model and extends it with more
detailed internal behavior. The model includes calls to other interface models of other
components.

Interface %Event ‘Guard } Actions |State Variable Updates fTarget State ‘

1 |Off (initial state)

4 | IDoorControlAPI |systemOn IDoorControlAPI. VoidReply; DoorClose
config:IConfigAPI.getConfiguration(>>speed, >>time);
sensor:ISensor.startSensing

8 DoorClose

12 | IDoorControlAPI |systemOff IDoorControlAPI. VoidReply; Off

| sensor:ISensor. stopSensing

13 |sensor:ISensorNI | detectedObject motor:IMotorAPI. motorOn(< <speed); DoorOpen
timer:ITimerAPI.startTimer(< <time)

15 DoorOpen

19| IDoorControlAPI |systemOff IDoorControlAPI. VoidReply; Off
sensor:ISensor.stopSensing;
motor:IMotorAPI. releaseBrake;
timer:ITimerAPI.stopTimer

20 |sensor:1SensorNI | detectedObject timer:ITimerAPI. startTimer(< <time) DoorOpen

21 |timer:ITimerNI | timeOut motor:IMotorAPL.releaseBrake DoorClose

Fig. 4. Design model of door controller. Illegal events are hidden

Figure 4 depicts the design model of the Door controller. The specification refines
the interface model of Figure 2 with all required internal details and uses the interface
models of other components such as the Sensor interface model of Figure 3. For example,
row 4 specifies that when the Door component receives a systemOn request, it does not
only return voidReply to the client, as specified in the interface model, but it also calls a
configuration component via the getConfiguration action and asks the Sensor hardware to
start monitoring the surroundings via the startSensing action. After that, the controller
transits to the DoorClose state. Note that, the call to the configuration is supplied with 2
data parameters namely, speed and time. When the call returns, the component stores
their values in the local storage parameters of the component using the >> operator, to be
retrieved later when needed via << operator. The rest of the specification is self-
explanatory.

An example of processing a callback is depicted in row 13 and 21 where the
component may receive a detectedObject and a timeOut callback from the Sensor and the
Timer components respectively

4. TAILORING CODE METRICS FOR ASD MODELS

To measure the quality of ASD models, we tailored a number of metrics that are
widely used in industrial practice for measuring the quality of source code like the
McCabe and Halstead complexity metrics [13], [10]. In this section we introduce these
metrics and discuss how we adapt them to measure ASD design and interface models.

We start by introducing the McCabe cyclomatic complexity metric (CC) and its
application to measure complexity of ASD models. Then, we introduce our tailored
version of the CC metric along with its application to ASD models. We discuss how both

123 ISSN: 2958-809X EISSN: 2958-8103 2024 jaiiw « L) sasdl (I Ll

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

metrics complement each other and how they provide more insights on the complexity of
the models. After that we introduce Halstead metrics detailing how they are adapted to
measure ASD models.
4.1 Cyclomatic complexity of ASD models

The cyclomatic complexity (CC) metric provides a quantitative measure on the
number of linearly independent paths in source code of a program, represented by a
control flow directed graph [13]. At the time the CC metric was developed, the main
purpose was to calculate the minimum number of test cases required to test the
independent paths of a program. When the CC metric is high it indicates not only that the
number of related test cases is high but also that the program itself is hard to read and
understand by developers.

To calculate the CC of source code, the program should first be represented as a
connected graph. For example, Figure 5 depicts a function foo and its graph
representation. The CC of a program can be calculated using the following equation:

CC=E-N+1,
where E denotes the number of edges in the graph and N is the total number of nodes.
The CC of the code presented in Figure 5 is: 5 — 5+1 = 1.

void fool(int x)

{
if (x==0)
bar();
else
baz();
foobar();
! foobar()

Fig. 5. Code and its graph representation

In a similar way, we can use CC for code as a basis to calculate the CC of ASD
models. The tabular notation of ASD models can also be seen as a directed graph that
contains edges and nodes. Note that, for ASD components we are mainly concerned with
the understandability aspect of ASD components rather than testing effort since model
checking replaces testing and guarantees that all paths of a model are exhaustively and
fully checked. Testing efforts can be of a concern for non-ASD components since their
implementation is handcrafted.

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [RRZL]

oglefld 1o
A, 18110 &y waiml

Sled daale — Alaglally bl 289 2uwatic) 28 (e jint - LeSmn Ligiuw cdimi duole AUsza

Interface |Event lGuard [Actions |State Variable Updates |Target State

1 X (initial state)

S IF al IF.\bidReply Y

4 |IF a2 IF.\bidReply Y

5 |IF a3 IF. \bidReply Y

8 |Y

13|IF a4 IF.\oidReply Y

14 |IF a5 IF.\bidReply i

Fig. 6. An ASD interface model with 2 states and 5 transitions

To illustrate how CC can be collected for ASD models, consider the specification
depicted in Figure 6. The specification consists of 2 states namely state X and state Y. In
state X, the machine accepts events al, a2 and a3 via the IF interface and then moves to
state Y. The machine stays in state Y forever accepting a4 and a5 events.

a) 3 a4 b)

' al,a2,a3 a4,as
R oh ST
%) a5

Fig. 7. a) Graphical representation with independent edges for events. b) Graph
with unique edges with set of actions

The graphical representation of the ASD state machine is depicted in Figure 7.a.
The CC of this model can be calculated as follows:
E=5N=2,
CC=5-2+1+4
Application to the Door models
The CC of the Door interface model depicted in Figure 2 is 1, while the CC of
the design model depicted in Figure 4 is 4. The CC of the Sensor interface model of
Figure 3 is 2.
4.2 Actual (structural) complexity
We tailored the CC metric to collect the so called Actual (or structural)
complexity (ACC) of a model. With the ACC metric we group edges between states. If
there are multiple edges between certain states, we only count them as one. This means

that in ACC any edge may contain one or more events (a set of events) while in CC each
edge has only one event. For example, in Figure 7b, it is possible to transit from state X to

125 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

o3 el — Hlaglally lilond] 2o Buuntill 28 (50 yeigmi - AaSimo Augioss s Arale Alns

state Y via either al, a2 or a3 events (one transition labeled by a set of events). In state Y
only a4 or a5 events are accepted.

Note that, the ACC metric does not replace CC but it complements it by
providing additional insight to complexity. It groups events that have similar transitions
and identical effect on a state. The metric gives an indication on how complex and
difficult it is for a human to read and to understand the model through navigating and
memorizing the history of states. The metric is not concerned with the number of tests
required to exercise the state machine. ACC can be calculated using the following
equation:

ACC=EU-N+1,

where EU denotes the total number of unique edges and N is the total number of
nodes. For instance, the ACC of the ASD state machine depicted earlier in Figure 6a can
be calculated as follows:

EU=2,N=2,

ACC=2-2+1=1

Application to the Door models

The ACC of the Door interface model depicted in Figure 2 is 1, while the ACC of

the design model depicted in Figure 4 is 4. The ACC of the Sensor interface model of
Figure 3 is 2.

4.3 Halstead, LoC and maintainability index

Using Halstead approach, metrics are collected based on counting operators and
operands of source code [10]. We introduce these metrics and discuss how we tailored
them to ASD models. Furthermore, we show how the lines of code metric and the
maintainability index are collected.

We start by introducing Halstead metrics. The metrics measure the cognitive load
of a program which is the mental effort used to understand, maintain and develop the
program. The higher the load, the more time it takes to design or understand it, and the
higher the chances of introducing bugs. Halstead considered programs as implementation
of algorithms, consisting of operators and operands. His metrics are designed to measure
the complexity of any kind of algorithms regardless of the language in which they are
implemented. Halstead metrics use the following basis measures:

and only if there is a sequence ¢ &€ I* distinguishes M and N, AM(o) # AN(o).

e nl:the number of unique operators,
e N1: the number of occurrences of operators,
e n2:the number of unique operands,

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [IR

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

e N2: the number of occurrences of operands,
e n=nl+n2:the model vocabulary,
e N =N1+ N2 the length of the model.

For any ASD model we consider the following to be operands:

e state variables used as guards,
e states of the state machine,
e data variables in events and actions.

We consider the following to be operators:

e events (calls, internal events and stimuli call-backs) and actions (all responses
including return values and call-backs),

e operators on state variables such as not, and, or, >, < (value of variable is stored
and retrieved), and $ (literal value).

The basic measures are then used to calculate the metrics below:
e Volume: V=N * log2n,
e Difficulty: D = (n1/2) * (N2/n2),
e Effort: E=D * V denotes the effort spent to make the model,
e Time required to understand the model: T = (E/18) (seconds),
e Expected number of Bugs: B =V /3000.

The volume metric V considers the information content of a program as bits.
Assuming that humans use binary search when selecting the next operand or operator to
write, Halstead interpreted volume as a number of mental comparisons a developer would
need to write a program of length N.

Program difficulty D is based on a psychology theory that adding new operators,
while reusing the existing operands increases the difficulty to understand an algorithm.

Program effort E measures the mental effort required to implement or comprehend
an algorithm. It is measured in elementary mental discriminations. For each mental
comparison (and there are V of them), depending on the difficulty, the human mind will
perform several elementary mental discriminations. The rate at which a person performs
elementary mental discriminations is given by a Stroud number that ranges between 5 and
20 elements per second. Halstead empirically determined that in the calculation of the
time T to understand an algorithm this constant should be adjusted to 18.

Finally, the estimated number of bugs B correlates with the volume of the software.
The more the size increases, the more the likelihood to introduce bugs. Halstead
empirically calculated the estimated number of bugs by a simple division by 3000.

We calculate the lines of code metric based on not only the total number of rows in
the model but also the number of actions in the Actions list. Therefore, each action counts
as 1 line. For instance, the specification of the Door interface model contains 4 LoC.

ISSN: 2958-809X EISSN: 2958-8103 2024 ot « L1 isoadl (L salsd

oglelld Lo
Ay i1l &y wei

o3 el — Hlaglally lilond] 2o Buuntill 28 (50 yeigmi - AaSimo Augioss s Arale Alns

The original maintainability index (MI) of source code is calculated based on V,
LoC and CC of the source code [5]. It indicates whether it is worth to keep maintaining,
modifying and extending a program or to immediately consider refactoring or redesigning
it.

Microsoft incorporated the Ml in the Microsoft Studio environment. We used the
formula of Microsoft to calculate the MI of ASD models. The formula is defined as
follows:

MI = MAX(0,(171 — 5.2 * In(V) — 0.23 * ACC —16.2 * In(LoC)) * 100/171)

The formula produces a number between 0 and 100, where 20 or above indicates
good and highly maintainable source code.

Application to the Door models

Table 1 lists the volume (V), expected number of bugs (B), difficulty (D) and time
(T in seconds) metrics of the three ASD models of the Door system.

Model Vv B D T (sec) LoC | MI
Door interface 33 0.01 2 4 4 76
Door design 236 | 0.08 16 | 210 19 55
Sensor interface 56 0.02 4 13 6 70.5

Table 1: METRICS OF DOOR CONTROLLER MODELS

The table is self-explanatory. Notable is the time required to understand the models.
The reader of this paper is expected to read and understand the specification of the Door
design model in about 210 seconds. All models exhibit a maintainability index of 20 and
above, hence they are highly maintainable. The rest of the data provided in the table is
self-explanatory.

5. OPTIMAL VALUES AND RECOMMENDED LIMITS OF METRICS

In this section, we propose limits of metrics for good quality interface and design
models. The limits were established after carefully analyzing and reviewing over 615
interface and design models built for a large photolithography system, developed by
ASML [1]. The limits were proposed after iterative review meetings and alignments with
various engineers who owned and developed the models.

Metric Limit of metric

Low Moderate | High
CC < 30 < 50 > 50
ACC <20 < 40 > 40
\" < 8000 < 14000 | > 14000
LoC (IM) < 200 < 400 > 400
LoC (DM) | < 500 < 800 > 800
MI <10 <20 > 20
VT <1min | <35 min > 5 min

Table 2 OPTIMAL VALUES OF METRICS FOR ASD MODELS

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [IRIZ:)

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

Table 2 lists all metrics and the advised limits in our industrial context. As
depicted in the table, the limits of the metrics for interface and design models are similar
except for the LoC metric.

In our industrial context, the CC of a module written in C++ should not exceed 10.
If source code exhibits a CC between 10 to 40 then the code should be refactored while if
it is more than 40 then the code is end-of-life and has to be rewritten again in a simpler
way. This CC limit may vary from one organization to another.

The reason that the limits of CC for models are raised compared to the CC for
source code is that the metrics are collected at the level of models. We found that the
tabular representation of the model raises the abstraction level and increases the
understandability of the software artifact compared to source code. Models with a CC less
than 30 were easy to understand when reviewing the tabular format of the models.

Similarly, designers were reasonably comfortable reviewing models that exhibit an
ACC of less than 20. For the size metric, we used the limit suggested by VerifySoft [19]
and observed that models exceeding 8000 are big in size. Finally, the thresholds of Ml
were chosen as used by Microsoft.

In our industrial context, we recommend that verification time (or waiting time for
the model checker during debugging) should not exceed 1 minute. The reason is that we
want to prevent that productivity of developers is hindered by the model-checking
technology.

Design and modeling are creative processes and having good metrics of a model
does not always mean that the underlying design is good. It is possible that certain models
exhibit metrics within the accepted limits while mixing the level of abstractions with
inappropriate decomposition of components and mixed responsibilities. While metrics
can help detecting bad smells and decays in early design phases, additional experts’
reviews are still needed to assess the overall design quality.

6. DETAILED DATA ANALYSIS

In this section we detail the application of the proposed metrics and the
recommended limits to measure and evaluate the existing ASD models, see Table 3. In
order to make the process of data analysis and collection of the models more efficient, we
built a tool that automatically extracts the metrics and visualize the results graphically.
The tool is compatible with ASD:Suite version 9.2.7. We used the tool to extract metrics
from 615 ASD interface and design models, developed in four different projects, within
the period of 2008 until the end of 2015.

129 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

Metric Interface | Design
Models Models
of models 348 267
Average CC 18 39.4
Average ACC 4.5 11

Total Volume 204,593 | 3,333,640
Total LoC 12,580 205,772
Total C++ LoC | 55,710 611,724

Table 3 SUMMARY OF STATISTICAL DATA OF DEVELOPED MODELS

Table 3 provides collected metrics data about the models. The total number of
interface models is 348 while there are 267 design models. Row 3 and 4 list the average
CC and ACC measures for the models. In row 5 the total volume or size of models is
depicted. Row 6 lists the total number of lines of code in the models while the last row
lists the total number of lines of the generated C++ code excluding blank lines.

Metric | Limit Interface | Design Percen-
models models | tage

< 30 299 178 77.56%

cC (30, 50) 24 26 8.13%

> 50 25 63 14.31%

< 20 333 231 91.71%
ACC (20, 40) 7 17 3.9%
> 40 8 19 4.4%

< 8K 344 181 85.37%

v (8K, 14K) 3 17 3.25%

> 14K 1 69 11.4%

< 200 338 182 84.55%

LoC (200, 400) 5 14 3.08%

> 400 5 71 12.36%

< 1 min 348 266 99.84%

VT (1 min,5min) | 0 I 0.16%

> 5 min 0 0 0%

Table 4 ANALYSIS OF METRICS VALUES

We separated ASD interface models from design models and then carefully
evaluated them in isolation. After that, we ordered the models according to CC, ACC and
volume, to sort the models based on their complexity and size. The purpose of sorting the
models is to capture the complex and big models that are present in our archive to
refactor and improve these models. The data analysis of these models is summarized in
Table 4.

In summary, the analysis revealed that over 22% of the models are relatively
complex based on the CC metric and the models should be refactored to reduce

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SIREL)

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

et A s nine sl s
i By s Ay ksl 154 i

complexity. Considering the ACC metric over 10% of the models should be refactored to
simpler models. We discuss the relation between CC and ACC shortly. With respect to
size, we considered the volume and LoC metrics. Over 15% of the models are big in size
and should be split into smaller models. Similarly, over 15% of the models include many
lines of code. Most of these big models exhibit also high complexity metrics; therefore,
improving one metric will consequently improve the other metrics.

All models were verified in less than 1 minute except one model which took about
5 minutes from the model checker. This model is also the biggest and the most complex
model compared to others. The reason that all models were verified in a short time is that
the execution of the components is configured to be single-threaded; therefore, there is no
concurrency that leads to the generation of big state spaces.

The data and results of our analysis are communicated to the development teams
together with the metric extraction tool to facilitate repeating the experiments. The teams
appreciated the work since it helped them uncover hidden complex and big models. A
team of one of the projects planned refactoring tasks to gradually improve the quality of
complex models. For newly started projects, developers frequently check the metrics of
their models to address any issue early during the modeling phase and before final
delivery of the models.

Qal ..an
: @

a3

Fig. 8. Representing a stateless machine as a flower-shape (CC) or a mouse ear
(ACC)

One observation during the data analysis is that not all models with high CC are
really complex to understand. We discuss this observation by comparing CC and ACC of
an example specification and discuss how the ACC metrics provided more insight in
complexity. Consider Figure 8. At the left of the figure a stateless machine accepts N
events. If we set N to 31 (meaning that 31 different events are accepted by the machine)
then CC = 31 while ACC = 1. Therefore, from the CC perspective the state machine is
considered to be moderate in complexity since it exceeded the complexity limit, we set
before as a guideline.

In fact, all models that exhibit a flower-shape behavior are not very complex but
they may be rather big because the interface is verbose with many events. These
machines are relatively simple to understand since they just consume input events in a
single state. This type of models exhibits a relatively very low ACC metric. Correlating
CC and ACC can help developers detecting interfaces that include many different events

131 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

that have actually the same behavior. In hindsight, it indicates to developers the need to
split the interface early and categorize the events into smaller models.

35
30

25

Fig. 9. Complexity of interface models of components sorted by ACC

Figure 9 depicts the CC and ACC of interface models of a number of components
in one project. model 07 gives an example of a flower-shaped interface model with high
CC and low ACC. By reviewing the contents of the model, we realized that the interface
contains many events that should be categorized and split into smaller interface models.
Notable are model 05 and model 06 which exhibit similar metrics. After reviewing the
models, we found that they are isomorphic in structure (they model 2 physical sensors of
the same type with different ids). An action was taken to combine the two models in one
and parametrize the ids of the sensors.

We observed that Halstead T and E metrics are very controversial. We found that
these metrics provide good estimates for models that are within the recommended size
limit of 8000. For some models that exceed this limit the metrics are not very accurate.
Empirical experiments are needed to adapt the formula for this type of models.

7. Metric Validation

The validation of a metric is done from two perspectives. The first perspective
considers the metric and the views of the engineers and the second considers only the
metric. To validate if a metric measures what it intends to, we performed an empirical
validation. This validation is described in Section 7.1 which addresses the survey and the
statistical framework used to gather and analyze the results. To validate a metric itself, we
propose to validate a metric against a set of formal mathematical properties, see Section
7.2. These properties are presented by Elaine Weyuker [21] and she argues that an
empirical validation is not sufficient to assess whether a metric is useful.

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SIIREY]

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

7.1 Empirical Validation

The view on what is good quality is different per engineer. Specifically, different
outcomes have a different meaning for each engineer. For example, for one engineer an
outcome of five for the action list size in the response list of ASD tables is fine and for
another engineer it is too high. This difference can be caused by the differences in
knowledge, design style, experience, and role within the organization, among others. A
validation of the metrics can be performed by interviews and review meetings. These
meetings take time and effort, since engineers need to reach a consensus, which is needed
for a metric to support an engineer during development. Reaching this consensus needs to
be done per metric.

Instead of reaching a consensus for each metric, we capture the views of the
engineers once and use them to validate multiple metrics (at this moment or in the future).
An empirical approach intends to do precisely that. Our approach is inspired by the
approach from Jorge Cardoso [21] (Cardoso), which was inspired by M.V. Zelkowitz &
D.R. Wallace [23] (Zelkowitz et al.) and D.E. Perry, A.A. Porter, & L.G. Votta [24]
(Perry et al.). The approach is divided in six main activities, which are addressed in the
following paragraphs. These activities are Research Context, Hypotheses, Study Design,
Threats to Validity, Data Analysis and Presentation, and Results.

Research Context The goal of the study is to validate the complexity metrics of
ASD models discussed above and start with building up a reference set for future
validations.

The specific metrics under consideration are the CC, the ACC, the HC, and the MI.
These metrics are presented in a previous article [19] and are reviewed by the engineers
within ASML and peers from The Institute of Electrical and Electronics Engineers [19]
(IEEE).

Hypotheses Before the study is set up and performed, it is important to know and to
state what we intend to evaluate. The hypotheses are statements that represent formally
what is under evaluation. We present two hypotheses, an abstract and a concrete
hypothesis. The abstract hypothesis indicates in general terms the question we want to
answer. The concrete hypothesis is derived from the abstract hypothesis and can be used
to test if the hypothesis holds. Our hypotheses do not reference a specific metric, since we
validate multiple metrics individually and for each metric a similar hypothesis is tested.
Therefore, we use the wording “candidate metric”.

Abstract Hypothesis: The candidate metric gives an indication of the complexity
of a model.

Concrete Hypothesis: There is a significant correlation between the candidate
metric and the subject’s rating of the complexity of a model.

133 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

o3 el — Hlaglally lilond] 2o Buuntill 28 (50 yeigmi - AaSimo Augioss s Arale Alns

Study Design After the statement of the hypotheses, the study is set up and designed.
The study design is a detailed plan for collecting the data, analyzing it, and testing the
hypotheses. The design is as follows:

Variable Selection: Typically, there are two kinds of variables: independent and
dependent. The independent variable is the cause of the effect. The dependent variable is
dependent on Metrics for independent variables and changes when the independent
variables change. In our study, the structure of the model is the independent variable. The
dependent variable is the complexity of the model, which varies when the structure of the
model changes.

Subject Selection: The subjects in the study are professional engineers from ASML.
These engineers are part of different departments and have different roles as well as
experience levels. All participants are regular ASD users. Specifically, most participants
use ASD on a weekly basis. The population consists of the 22 participants of which there
are:

e 9 developers, 14 designers, 3 architects, and 3 testers. [multiple roles possible, 1
unknown]

e 1 undergraduate, 9 graduates, and 8 post-graduates. [4 unknown]

e 5 daily users, 10 weekly users, 4 monthly users, and 2 irregular users. [1
unknown]

e 9 experienced users, 5 not inexperienced nor experienced users, 3
inexperienced users. [5 unknown]

e 10 more experienced, 5 at same level of experience, and 5 less inexperienced
participants compared to their direct colleagues. [2 unknown]

Note that, to alleviate threats to validity we excluded any participant who uses
ASD in the context other than constructing real production models, such as students or
researchers.

Experiment Design: The models under consideration are ASD models randomly
selected from a set of over a 1,000 production models based on the measured complexity.
The production models were analyzed by computing the CC and ACC metrics. The
results of the corpus analysis can be found in [20]. The CC and ACC metrics measure the
independent variable of our study. Several intervals were constructed based on the
thresholds presented in [19]. All analyzed models were categorized based on these
intervals. From each interval, one model was randomly selected to make sure that all
variations of measured complexity are under consideration. All selected models were
analyzed on the other metrics to verify that there was variation in the outcomes. The total
number of selected models is 30.

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [IREL]

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

The dependent variable, the observed complexity, was measured by scores and
labels. The models were rated by the participants by providing a score and a label. The
scores need to be between 0 and 100, where 0 indicates “no complexity” and 100 “highly
complex.” In addition to the scores, the participants gave one of the five labels explicitly
indicating the level of perceived complexity, ranging from “no complexity” to “highly
complex”.

Most participants rated the models individually in two sessions, one per location.
The participants were aware of the setup of the survey and instructed to not share
information with each other during the sessions. The participants had unlimited time to
rate all the models. A handful of participants was not able to join the sessions and
therefore rated the models at their own convenience.

Threats to Validity There are a number of factors that can influence the study and
its results or that limit the ability for interpretation. These influences are called threats to
validity and the relevant ones are presented in this paragraph

Construction Validity: All the measurements of the dependable variable are
subjective and based on the perception of the participants. The participants in this study
are familiar with ASD and therefore we think that their ratings reflect their views on
complexity

The measurements of the independent variable can also be considered as
constructively valid, since they measure the structural interaction between elements of the
model, which is in line with complexity theory. Additionally, the metric was reviewed by
a number of peers.

The method we used is partially subject to the mono-method bias, bias referring to
measures and observations in only one way. The dependent variable is only measured by
the views of the engineers. The participants rated the model in two ways, which partially
mitigates the mono-method bias. To mitigate it, other sources of complexity aspects can
be added in the future, such as number of modifications of the model.

Since the models were selected from the set of production models, participants
could fall into the trap of evaluation apprehension. Participants could rate their own
models with a lower score than they would do for other models with the same complexity.
To mitigate this, participants and models are selected from different departments. For
each model the majority of participants is not familiar with it.

Internal validity: Threats to internal validity compromise our confidence in
something about the relationship between the dependent and independent variable. The
effects of confounding variables, variables that influence the dependent variable but are
not in the scope of the study, are typically considered as threats to internal validity.
Example effects are the learning effect and the fatigue effect.

The learning and ordering effects are relevant for our study. The learning effect is
the effect on the study where participants improve their results or performance because

135 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

they are used to the experiment. The ordering effect is the effect where the ratings of
models later in the survey are biased, since they are compared against models earlier in
the survey. To mitigate both effects, each participant received a random ordering of the
models.

The number of models that was selected was based on the assumption that a
model could be rated in one to one-and-a-half minutes. This would mean that all models
could be rated in 45 minutes to one hour and therefore the effects of fatigue would not
occur. During the study we observed that most participants needed more than one hour
and some needed even three hours to complete the survey. The random ordering of the
models partially mitigates the effects of fatigue, since all models have an equal
probability to be subject to these effects. The focus of the survey was on complexity, but
the participants were asked to also rate the models on other quality attributes, such as
readability and cohesion. The quality attributes more to the right of the survey are more
likely to be subject to the effects of fatigue and therefore findings for those attributes
should be treated with care.

External Validity: Threats to external validity compromise our confidence in the
applicability of the results. We identified two threats to external validity. Namely, the
subject selection and the ecological threat. The subject selection limits the ability to
generalize the results to other engineers within ASML. The participants were selected
based on their familiarity with ASD. Therefore, we cannot generalize the findings for
other engineers, who are abundant within ASML.

The other threat to external validity, ecological threat, limits the generalization of
the findings to other domains. The selected models are taken from the set of production
models and therefore only address the domain of ASML. The findings might apply to
other domains, but this needs to be further investigated.

Data Analysis and Presentation The ratings of the participants can be analyzed
with two approaches, quantitative and qualitative. Since the participants rated the models
with a score of 0 to 100, we selected a quantitative analysis. The labels are used to
perform a qualitative analysis of the ratings.

Analysis of the Scores: As mentioned earlier, our goal is to determine if a
significant correlation exists between the outcomes of the candidate metric and the
subject’s rating of the complexity of a model. Since the ratings are distribution-free, the rs
is used to determine the correlation. The rs is a non-parametric statistic used to show the
relationship between two variables, which are expressed as ranks (the ordinal level of
measurement). The coefficient is a measure of the ability of one variable to predict the
value of the other. We use the rs to correlate the ratings of a participant to the outcomes
of the candidate metrics. To use the rs, a null hypothesis is needed. We used the following
null hypothesis:

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SIFEL)

Y oglolld 130

f Qi‘r A4iALIg Aywaicl

l lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

- e o
T By Ay kil 154 i

HO: there is no correlation between the candidate metric and the subject’s rating of
the complexity of a model.

The probability that the null hypothesis would be erroneously rejected is controlled
by the confidence level. We used the confidence level of 95% (indicated by a = 0.05). We
reject the null hypothesis if rs > 0.375. The constant is based on the degrees of freedom of
our study, which is 28, and the a.

Participant CC ACC HC MI MMI

1 0.709785 0.586756 0.317464 -0.61468 -0.59956
2 0.683487 0.685596 0.51182 -0.64497 -0.6235
3 0.61619 0.785929 0.287049 -0.77592 -0.8004
4 0.773239 0.681581 0.339711 -0.70323 -0.64316
5 0.704907 0.758081 0.4412045 -0.79245 -0.77449
6 -0.64067 -0.49883 -0.52618 0.556161 0.535579
7 -0.63431 -0.64769 -0.51898 0.68237 0.701341
8 0.653787 0.676293 0.43657 -0.75938 -0.74474
9 0.551494 0.62172 0.285049 -0.49374 -0.49956
10 0.685816 0.70492 0.319502 -0.8388 -0.82612
11 0.575714 0.708696 0.412034 -0.57426 -0.59766
12 0.726692 0.803884 0.454024 -0.77267 -0.7984
13 0.141378 0.234391 0.2307 -0.18398 -0.19689
14 0.637281 0.839309 0.422848 -0.72736 -0.77282
15 -0.69719 -0.56736 -0.58594 0.713864 0.696197
16 0.486303 0.485971 0.350697 -0.54873 -0.538
17 0.765341 0.792785 0.476519 -0.78389 -0.75807
Overall 94.12% 94.12% 58.82% 94.12% 94.12%

Table 5: rs between the participant’s rating and the outcomes of the candidate metrics

(Note) Blue cells indicate rejection of the HO (> 0.375). Candidate metrics are
Cyclomatic Complexity [2, 3] (CC), Structural Complexity [3] (ACC), Halstead
Complexity [4, 3] (HC), and Maintainability Index [5, 3] (MI).

Analysis of the Labels: The qualitative analysis of the labels is used to determine
the thresholds for the candidate metric. Per model we compute the number of participants
who rated it with a specific label. In other words, we count how often a specific label is
given to a specific model.

If a label receives the absolute majority, the half or more, of the occurrences, then
we consider the label as significant. If the number of occurrences is between the uniform
share, total number of participants divided by the number of labels, and the absolute
majority, then we consider that the label might be significant. Based on the significant

137 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

labels, we extract thresholds. These thresholds can be used to assess the complexity of the
model and can give a meaning to the outcomes.

Results Table 5 presents the rs between the ratings of the participant and the
outcome of the candidate metric. The rs is presented for each participant. The last row
presents the percentage of significant correlations. The candidate metrics are the CC,
ACC, HC, and MI. The null hypothesis is rejected if the rs is above 0.375. The cell is
colored blue for the participants for which the HO is rejected. Note that for some
participants we observed a negative correlation. The reason for this is that their ratings
were reversed. For them 100 meant no complexity and O highly complex. From the
results we can observe that 94.12% of the participant ratings correlates significantly with
our candidate metrics, except for the HC. Therefore, we can conclude that the CC, ACC,
and MI indeed measure the complexity of a model. Note that for the MI metrics the
correlation is a negative correlation.

Occurrences of the labels
Model No Low Moderate High Overly
complexity | complexity | complexity | complexity | complex

1 0 6 7 2 3
2 2 12 2 1 2
3 1 2 9 7 0
4 1 12 4 0 2
5 i3 2 1 1 1
6 11 6 0 0 2
7 2 11 3 0 3
8 0 2 2 9 6
9 0 7 10 0 2
10 1 3 5 8 2
11 0 1 B 6 7
12 1 6 9 2 1
13 0 11 6 0 2
14 0 B 7 4 3
15 0 5 10 2 2
16 0 1 2 1 15
17 0 1 3 3 10
18 1 3 7 5 3
19 0 2 4 7 6
20 1 10 3 3 2
21 L 8 3 1 3
22 0 2 4 7 6
23 0 9 9 0 1
24 3 6 5 0 D)
25 0 6 10 2 1
26 3 10 2 2 1
27 1 4 10 3 1
28 3 7 4 3 2
29 1 2 7 3 6
30 0 7 7 3 2

Table 6: Occurrences of a label for a model. Blue cells indicate significant labels and
light blue might be significant labels.

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SIRIEL)

oglefld 1o
A, 18110 &y waiml

Sled daale — Alaglally bl 289 2uwatic) 28 (e jint - LeSmn Ligiuw cdimi duole AUsza

Table 6 presents the number of occurrences of each label given by the participants for
each model. The outcomes of the candidate metric are also presented. If a label is
significant, absolute majority of the occurrences, the cell is colored blue. If a label might
be significant, the number of occurrences is more than the uniform fraction, the cell is
colored light blue. From the results we see that for each model at least one label might be
significant or is significant. Based on these labels we can extract thresholds. For
convenience we order the table based on the outcome of the candidate metric. The
extraction of the thresholds is done by eyeballing the table. A statistical approach could
be used instead, but we did not investigate possible approaches due to time limitations.
Table 7 orders the models based on the outcome of the CC metric. Based on this table we
could extract the following (example) thresholds:

e 0<cc<30: Low complexity.
* 30<cc<60: Moderate complexity.
* 60 < cc < oo: High complexity

Occurrences of the labels
Model No) Low) Muderat.e High . Overly cc
complexity | complexity | complexity | complexity | complex

5 13 2 1 1 1 2

6 11 6 0 0 2 8
13 0 11 6 0 2 22
26 3 10 2 2 1 23
4 1 12 4 0 2 26
23 0 9 9 0 1 28
30 0 7 7 3 2 29
7 2 11 3 0 3 30
10 1 | 3 5 8 2 30
20 1 10 3 3 2 30
15 0 5 10 2 2 34
14 0 5 7 4 3 35
21 4 8 3 1 3 35
28 3 7 4 3 2 36
27 1 4 10 3 1 38
1 0 6 7 2 3 40
12 1 6 9 2 1 40
9 0 7 10 0 2 45
2 2 12 2 1 2 47
11 0 [1 5 6 7 53
18 1 |3 7 5 |3 53
25 0 6 10 2 |1 56
24 3 6 5 0 5 57
29 1 2 7 3 6 68
8 0 2 2 9 6 72
3 1 2 9 7 [0 87
19 0 2 4 7 6 95
17 0 1 3 B 10 108
22 0 2 4 7 6 173
16 0 1 2 1 15 334

Table 7: Occurrences of a label for a model ordered by the outcome of the CC metric.
Blue cells indicate significant labels and light blue might-be-significant labels

139 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

oglelld Lo
Ay i1l &y wei

sbed daals — Aslaglally &lwlonll 480 Al S (e jiins - LeSima Ligiuw ciymi Auole Ams

7.2 Formal Validation

In addition to the empirical validation, we can also validate a metric against a set of
formal mathematically properties. Weyuker proposed a set of nine mathematical
properties that a complexity metric should have. Since the focus of our metrics is about
complexity, we summarize the properties in the next paragraphs.

Outcome Differences The first property states that there should be programs for
which the metric has a different outcome. If for all programs the outcome is the same, it is
neither useful nor practical. The reverse is often also not useful, where all items have a
different outcome. Essentially, the metric should not be too coarse nor should it be too
fine. So, the second property strengthens the first by considering the same outcome only
occurs for a limited number of programs. Formally, it states that for an outcome c, there
are finitely many programs for which the metric maps them to c. In addition to the second
property, the third property states that there are distinct items with the same outcome. The
first three properties together make sure a metric is neither too coarse nor too fine.

Implementation Abstraction The first three properties do not consider the fact
that programs have semantics and syntax. Property four reflects the fact that we are
dealing with syntactic metrics. The intuition behind property four is that even though two
programs compute the same function, the details of the implementation determine the
complexity. Property four states that there exist behaviorally / semantically the same
programs with different outcomes.

Items and Their Components The complexity of a program originates from its
implementations and the interactions between the components the implementation is
composed of. Property five addresses this aspect, by stating that the complexity of two
programs should be less than or equal to the complexity of the composite of the two items.
We do not expect the complexity to decrease by composing programs.

On a related line of thought, we would expect that the complexity can increase by
composing programs. Specifically, we expect that if there is an interaction between the
implementations of two composed programs, that the complexity is different. This is what
property six states; there is a program for which the complexity of the composite with one
program (Q) is different than for the composite with another program (P), where the
programs P and Q have the same complexity.

Property nine is a slight strengthening on properties five and six, in some cases.
Property nine indicates that for some programs it holds that the complexity of the
composite is larger than the sum of the complexities. The intuition behind property nine is
that the interactions between the items contribute to the complexity of the composite.

Implementation Interactions We discussed that the complexity is dependent on
the interactions of the implementation. Property seven takes this a bit further and states
that the reordering of an implementation leads to a different outcome. A different internal
ordering leads to different interactions and therefore a different outcome.

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [IRRLY)

oglefld 1o
A, 18110 &y waiml

lod Zaalo — Baloglally clloel) 2S5 Akl 28 (0 poigmi - AeSimo Hugiss g Arale Al

Measure the Syntax The metric is defined on the syntax and not on the semantics.
Therefore, property eight states that if we rename a program or parts of its
implementation then the outcome remains the same. A concrete example of a metric that
satisfies this property is a metric that is robust against the difference in names of variables
or functions.

8. CONCLUSIONS AND FUTURE WORK

As industry is rapidly migrating towards model-based development, it is becoming
urgent to establish means to measure the quality of models since they form the main
software artifact in the modeling paradigm. In this article we proposed a number of
metrics for ASD models which are state machines specified in a tabular format. As a
result of applying our new metrics, we could measure the quality of these models using
the new metrics. This introduces a basis to introduce new metrics for other type of models.

An apparent limitation of our work is that we only considered the structural
complexity of models. The added complexity of introducing guards in the specification is
not considered. Guards can have a similar complexity effect as introducing states. Finally,
the results of this work reveal the importance and need for metrics at the model level.
Based on the metric feedback, and subsequent review of the flagged models, interesting
patterns and opportunities for model improvement were identified. Moreover, the results
reveal that more work is needed to extend the set of metrics making them also less
sensitive or biased for certain patterns and aspects.

References
[1] ASML homepage. http://www.asml.com. (Accessed 2024).

[2] F. Badeau and A. Amelot. Using B as a High Level Programming Language in an
Industrial Project: Roissy VAL, p 334-354. Springer Berlin Heidelberg, 2005.

[3] J.L. Boulanger, F.-X. Fornari, J.-L. Camus, and B. Dion. SCADE: Language and
Applications. Wiley-IEEE Press, 1st edition, 2015.

[4] CodeSonar homepage. http://www.grammatech.com. (Accessed 2024).

[5] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software
system maintainability. Computer, 27(8):44-49, Aug. 1994.

[6] Formal Systems (Europe) Ltd. FDR2 model checker, 2011. http://www.fsel.com/

[7] J.S. Fitzgerald, P. G. Larsen, and S. Sahara. Vdmtools: advances in support for formal
modeling in VDM. SIGPLAN Notices, 43(2):3-11, 2008.

[8] L. Guo, A.S. Vincentelli, and A. Pinto. A complexity metric for concurrent finite state
machine based embedded software. In 2013 8th IEEE International SIES, p. 189-
195, 2013.

[9] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code.
Component software series. Addison-Wesley, 1999.

141 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

http://www.fsel.com/

oglelld Lo
Ay i1l &y wei

o3 el — Hlaglally lilond] 2o Buuntill 28 (50 yeigmi - AaSimo Augioss s Arale Alns

[10] M.H. Halstead. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA, 1977.

[11] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

[12] J. Jurjens and S. Wagner. © Component-Based Development of Dependable Systems
with UML, pages 320-344. Springer Berlin Heidelberg, 2005.

[13] T.J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308-320, July
1976.

[14] H. D. Mills. Stepwise refinement and verification in box-structured systems.
Computer, 21(6):23-36, June 1988.

[15] A. Osaiweran, M. Schuts, J. Hooman, J.F. Groote, and B. van Rijnsoever. Evaluating
the effect of a lightweight formal technique in industry. Int. Jour. on STTT, Springer,
18(1):93-108, 2016.

[16] A. Osaiweran, M. Schuts, J. Hooman, and J. Wesselius. Incorporating formal
techniques into industrial practice: An experience report. ENTCS. 295:49-63, May
2013.

[17] Tiobe homepage. http://www.tiobe.com. (Accessed 2024).

[18] Verum homepage. http://www.asd.verum.com. (Accessed 2024). [19] Verifysoft
homepage. http://www.verifysoft.com. (Accessed 2024).

[19] A. Osaiweran, J. Marincic, and J. F. Groote, “Assessing the quality of tabular state
machines through metrics,” in IEEE International Conference on Software Quality,
Reliability and Security. Prague, Czech Republic: IEEE Computer Society, 2017, pp.
426-433.

[20] C. Lambrechts, “Metrics for Control Models in a Model-Driven Engineering
Environment”. PDEng thesis, Technische Universiteit Eindhoven, sept 2017.

[21] E. J. Weyuker, “Evaluating software complexity measures,” IEEE Trans. Softw.
Eng., vol. 14, no. 9, pp. 1357-1365, Sep. 1988.

[22] J. Cardoso, “Process control-flow complexity metric: An empirical validation,” in
Proceedings of the IEEE International Conference on Services Computing, ser. SCC
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.

[23] M. V. Zelkowitz and D. R. Wallace, “Experimental models for validating
technology,” Computer, vol. 31, no. 5, pp. 23-31, May 1998.

[24] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software
engineering: A roadmap,” in Proceedings of the Conference on The Future of
Software Engineering, ser. ICSE *00. New York, NY, USA: ACM, 2000, pp. 345—
355.

2024 patiee ¢ S scall (2 sl ISSN: 2958-809X EISSN: 2958-8103 [SRR

oglefld 1o
A, 18110 &y waiml

Sled daale — Alaglally bl 289 2uwatic) 28 (e jint - LeSmn Ligiuw cdimi duole AUsza

[25] Masmali, O., Badreddin, O. (2021). Theoretically Validated Complexity Metrics for
UML State Machine Models. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Proceedings of
the Future Technologies Conference (FTC) 2020, Volume 3. FTC 2020. Advances in
Intelligent Systems and Computing, vol 1290. Springer, Cham.
https://doi.org/10.1007/978-3-030-63092-8 28

[26] Lidia Lépez, Xavier Burgués, Silverio Martinez-Fernandez, Anna Maria Vollmer,
Woubshet Behutiye, Pertti Karhapad, Xavier Franch, Pilar Rodriguez, Markku Oivo,
Quality measurement in agile and rapid software development: A systematic mapping,
Journal of Systems and Software, Volume 186, 2022, 111187, ISSN 0164-1212,
https://doi.org/10.1016/j.jss.2021.111187

143 ISSN: 2958-809X EISSN: 2958-8103 2024 poiiw « Sl isaall (eSS ad =l

https://doi.org/10.1007/978-3-030-63092-8_28
https://doi.org/10.1016/j.jss.2021.111187

