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Abstract: 

Software metrics are widely used to measure the 

quality of software and to give an early 

indication of the efficiency of the development 

process in industry. There are many well-

established frameworks for measuring the 

quality of source code through metrics, but 

limited attention has been paid to the quality of 

software models. In this article, we introduce 

new metrics that are tailored to measure the 

quality of models of state machines and then 

apply the metrics to evaluate the quality of state 

machine models specified using the Analytical 

Software Design (ASD) tooling. We discuss 

how we applied a number of metrics to ASD 

models in an industrial setting and report about 

results and lessons learned while collecting 

these metrics. Furthermore, we recommend 

some quality limits for each metric and validate 

them on models developed in a number of real 

industrial projects. This paper extends [19] by 

providing a formal and empirical validation of 

the metrics and their related limits. The results 

of our work provide a framework to measure the 

quality of state machine models, developed in 

ASD, and give a basis for future research on 

introducing quality metrics for other type of 

models of which quality metrics are missing. 
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1. Introduction 

    The use of model-based techniques in software development processes has been 

promoted for many years [15,2,7,3]. The aim is to use the models as the main software 

artifacts in the development process, not only for visualization and communication 

among developers, but also as means of specification, formal verification, code 

generation, testing and validation.  

    In traditional development, source code is the main software artifact. To measure 

the quality of source code, a number of widely used metrics are utilized, with well-

established industrial strength tools and frameworks, such as TICS [17], CodeSonar [4] 

and VerifySoft [19]. Code metrics are useful means to detect decays and code smells [9] 

that hinder future evolution and maintenance.  

    However, these frameworks and tools cannot be applied directly to measure the 

quality of models. They can measure the generated code, but it is debatable whether this 

is meaningful. This is because, usually, code generators generate correct and optimal 

source code tailored to a specific domain and the generated code is often excluded from 

code analysis tools due to violations and non-adherence to the prescribed coding 

standards. Therefore, complexity, duplication and other undesired properties must be 

analysed at the level of models. Since industry is becoming more reliant on software 

models, there is an urgent need to establish a way for measuring various metrics at the 

level of models and not at the level of source code.  

   In our industrial context, we use state machines to design and specify reactive and 

control aspects of software using a lightweight formal modeling tool called ASD: Suite 

[18]. The tool allows modeling of state machines in a tabular format. These models can 

be formally verified and corresponding source code can be generated from these models. 

Because there are no means to measure the quality of these models, a number of 

challenging questions are raised. How can we evaluate the quality of this type of state 

machine models? Are some of the models developed in early projects in our industrial 

setting overly complex? Which factors contribute to the complexity of models? How can 

these factors be detected and measured? How can we help engineers to improve the 

quality of their future models? How can we provide to modelers information on 

deterioration as their models evolve?  

   In this paper we provide answers to the above questions by utilizing a number of 

software metrics that we tailored and adapted for measuring the quality of ASD models. 

Another challenging research question is how to validate the correctness of these metrics 

with respect to the perception of software engineers who developed the models. This is 

because a complex model from a perspective of an engineer may be observed as a simple 

model by another engineer. To address this challenge, we conducted validation and 

verification steps to proof the soundness of the metrics using empirical and formal 

validation steps. The validation also includes the proposed thresholds of the metrics [20]. 
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This paper extends a previously published article [19] with these validation and 

verification steps of the metrics. 

   The paper is structured as follows. Section 2 discusses related work on metrics of 

state machines. Section 3 introduces ASD to the extent needed for this article. In Section 

4 a number of well-known software metrics are detailed with the application to ASD 

models. Section 5 introduces recommended limits of metrics for good quality models. 

Section 6 details the data collection process of metrics from models and discusses 

observations during the data analysis. In Section 7 we detail out the verification and 

validation steps formally and empirically. In Section 8 we conclude our paper 

highlighting the limitations of our metrics and future work in this regard. 

2. Related Work 

In previous research at Philips Healthcare [16], guidelines for readability and 

verifiability of ASD models were introduced. An important guideline is for instance: an 

ASD tabular model should not include more than 250 rows leading to not more than 3000 

lines of generated code. The limitation of this guideline is that it considers only the size of 

models and generated code while no other complexity factors were addressed. To 

estimate the reliability of UML state machines, and to identify failure-prone components, 

a group of authors [12] measured the cyclomatic complexity of UML state machines. 

They did not measure the CC directly on state machines, but on the control flow graph 

generated from their software realization. Similarly, other authors focus on assessing the 

number of tests. For example, in [8] decision diagrams as intermediate artifacts were used 

to calculate the number of tests for the code of concurrent state machines. In [25] they 

provide a metric based on complexity rate for each element in the state machine model 

but they did not provide metrics to evaluate the entire state machine from different 

aspects. In [26], the authors surveyed quality metrics of requirements in Agile and rapid 

development but they did not consider metrics and quality of models in their study. 

3. ANALYTICAL SOFTWARE DESIGN 

   This section provides a short introduction of the ASD approach and its toolset, the 

ASD: Suite [18]. Using the ASD: Suite, models of components and interfaces can be 

described. Two types of models are distinguished which are both state machines specified 

by a tabular notation: ASD interface models and ASD design models.  

   The external behaviour of a component is specified using an interface model which 

excludes any internal behaviour not seen by client components that use the interface. The 

interface model is implemented by a design model which typically uses the interfaces of 

other so-called server components.  

   An ASD component includes an implemented interface model, a design model, 

and optional server interface models. Formal verification is established by verifying that 

calls in design models to interfaces of server components are correct, with respect to 

contracts of the servers. For this ASD uses CSP/FDR2 [11], [6] for model checking by 
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exhaustively searching for illegal interactions, deadlocks or livelocks in the behaviour. It 

is also formally checked whether the behaviour of the design model obeys its 

implemented interface model.  

   The ASD tool also provides the modeler with elementary metrics related to the 

generated state space such as the number of states and transitions and the time required 

for verification in seconds. Besides formal verification, the ASD: Suite allows code 

generation to a number of languages (C, C++, C#, Java). 

 

 

Fig. 1. Example controller system of automatic door 

In ASD, a client issues synchronous calls to server components, whereas a server 

sends asynchronous callbacks to its clients. These callbacks are non-blocking and can be 

received by a component at any time.  

   We detail the ASD specification by using a small automatic Door controller 

example. It consists of a Door controller component that controls a Sensor and a Motor 

component, see Figure 1. The Controller receives two requests from external clients, 

namely systemOn to start-up the system and systemOff to shutdown the system. When the 

system is ON, the controller may receive a callback from the sensor component when 

there is a detected object. Upon such an event, it issues a command to the motor 

component to open the door and apply a brake. Then it starts a timer and when it times 

out the controller issues a command to release the brake to close the door. This example 

is used to clarify and illustrate the interface model in Section 3.1 and the design model in 

Section 3.2.  

3.1 ASD Interface Models 

   The interface model is the first artifact that must be specified when creating an 

ASD component. It describes the external behavior of the component by means of the 

allowed sequence of calls and callbacks, exchanged with clients. Any internal behavior 

not visible to clients is abstracted from the interface specification.  

   Figure 2 depicts the tabular specification of an ASD interface model. The 

specification lists all implemented interfaces, their events (also called input stimuli), 

guards or predicates on the events. A sequence of response actions can be specified in the 
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Actions list such as return values or callbacks to clients, and special actions such as 

Illegal which essentially marks the corresponding event as not allowed in that state.  

   In Figure 2 the interface specification of the Door controller is described. The 

model contains two states: Off and On. Any ASD model must be complete in the sense 

that actions for all input stimuli events must be defined in every state. For example, in 

row 3 a systemOn event is accepted and the component will transit to state ON after 

returning a voidReply to IDoorControlAPI. In row 4 and 7 of Figure 2 the Illegal action is 

specified denoting that invoking the event is forbidden by clients. Once in the On state, 

the component accepts a systemOff request and transits back to the Off state. Similarly, 

Figure 3 depicts the external behavior of the  

 

 

Fig. 2. Interface model of door controller 

Sensor hardware component, which is strictly alternating between the Active and 

Inactive states via the startSensing and stopSensing events. In row 10, a so-called internal 

event is specified denoting that something internal in the device can happen, which is in 

this case a detectedMovement. As a consequence, the detectedObject callback is sent to 

the controller and the Sensor remains in the Active state. Via internal events, the interface 

abstracts from one or more actions that happen internally in the implementation. 

 

Fig. 3. Sensor interface model 
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3.2 ASD Design Models 

   The ASD design model implements the interface model and extends it with more 

detailed internal behavior. The model includes calls to other interface models of other 

components.  

 

Fig. 4. Design model of door controller. Illegal events are hidden 

   Figure 4 depicts the design model of the Door controller. The specification refines 

the interface model of Figure 2 with all required internal details and uses the interface 

models of other components such as the Sensor interface model of Figure 3. For example, 

row 4 specifies that when the Door component receives a systemOn request, it does not 

only return voidReply to the client, as specified in the interface model, but it also calls a 

configuration component via the getConfiguration action and asks the Sensor hardware to 

start monitoring the surroundings via the startSensing action. After that, the controller 

transits to the DoorClose state. Note that, the call to the configuration is supplied with 2 

data parameters namely, speed and time. When the call returns, the component stores 

their values in the local storage parameters of the component using the >> operator, to be 

retrieved later when needed via << operator. The rest of the specification is self-

explanatory.  

An example of processing a callback is depicted in row 13 and 21 where the 

component may receive a detectedObject and a timeOut callback from the Sensor and the 

Timer components respectively 

4. TAILORING CODE METRICS FOR ASD MODELS 

   To measure the quality of ASD models, we tailored a number of metrics that are 

widely used in industrial practice for measuring the quality of source code like the 

McCabe and Halstead complexity metrics [13], [10]. In this section we introduce these 

metrics and discuss how we adapt them to measure ASD design and interface models.  

   We start by introducing the McCabe cyclomatic complexity metric (CC) and its 

application to measure complexity of ASD models. Then, we introduce our tailored 

version of the CC metric along with its application to ASD models. We discuss how both 
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metrics complement each other and how they provide more insights on the complexity of 

the models. After that we introduce Halstead metrics detailing how they are adapted to 

measure ASD models.  

4.1 Cyclomatic complexity of ASD models  

   The cyclomatic complexity (CC) metric provides a quantitative measure on the 

number of linearly independent paths in source code of a program, represented by a 

control flow directed graph [13]. At the time the CC metric was developed, the main 

purpose was to calculate the minimum number of test cases required to test the 

independent paths of a program. When the CC metric is high it indicates not only that the 

number of related test cases is high but also that the program itself is hard to read and 

understand by developers.  

   To calculate the CC of source code, the program should first be represented as a 

connected graph. For example, Figure 5 depicts a function foo and its graph 

representation. The CC of a program can be calculated using the following equation: 

CC = E − N + 1, 

where E denotes the number of edges in the graph and N is the total number of nodes.  

The CC of the code presented in Figure 5 is: 5 − 5+1 = 1. 

 

Fig. 5. Code and its graph representation 

    In a similar way, we can use CC for code as a basis to calculate the CC of ASD 

models. The tabular notation of ASD models can also be seen as a directed graph that 

contains edges and nodes. Note that, for ASD components we are mainly concerned with 

the understandability aspect of ASD components rather than testing effort since model 

checking replaces testing and guarantees that all paths of a model are exhaustively and 

fully checked. Testing efforts can be of a concern for non-ASD components since their 

implementation is handcrafted. 
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Fig. 6. An ASD interface model with 2 states and 5 transitions 

To illustrate how CC can be collected for ASD models, consider the specification 

depicted in Figure 6. The specification consists of 2 states namely state X and state Y. In 

state X, the machine accepts events a1, a2 and a3 via the IF interface and then moves to 

state Y. The machine stays in state Y forever accepting a4 and a5 events.  

 

 

Fig. 7. a) Graphical representation with independent edges for events. b) Graph 

with unique edges with set of actions 

 

   The graphical representation of the ASD state machine is depicted in Figure 7.a. 

The CC of this model can be calculated as follows:  

E = 5, N = 2, 

CC = 5 − 2+1=4 

Application to the Door models  

   The CC of the Door interface model depicted in Figure 2 is 1, while the CC of 

the design model depicted in Figure 4 is 4. The CC of the Sensor interface model of 

Figure 3 is 2.  

4.2 Actual (structural) complexity  

   We tailored the CC metric to collect the so called Actual (or structural) 

complexity (ACC) of a model. With the ACC metric we group edges between states. If 

there are multiple edges between certain states, we only count them as one. This means 

that in ACC any edge may contain one or more events (a set of events) while in CC each 

edge has only one event. For example, in Figure 7b, it is possible to transit from state X to 
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state Y via either a1, a2 or a3 events (one transition labeled by a set of events). In state Y 

only a4 or a5 events are accepted.  

 

   Note that, the ACC metric does not replace CC but it complements it by 

providing additional insight to complexity. It groups events that have similar transitions 

and identical effect on a state. The metric gives an indication on how complex and 

difficult it is for a human to read and to understand the model through navigating and 

memorizing the history of states. The metric is not concerned with the number of tests 

required to exercise the state machine. ACC can be calculated using the following 

equation: 

ACC = EU - N + 1, 

where EU denotes the total number of unique edges and N is the total number of 

nodes. For instance, the ACC of the ASD state machine depicted earlier in Figure 6a can 

be calculated as follows:  

EU = 2, N = 2, 

ACC = 2 − 2+1=1 

Application to the Door models  

The ACC of the Door interface model depicted in Figure 2 is 1, while the ACC of 

the design model depicted in Figure 4 is 4. The ACC of the Sensor interface model of 

Figure 3 is 2. 

 

4.3 Halstead, LoC and maintainability index  

   Using Halstead approach, metrics are collected based on counting operators and 

operands of source code [10]. We introduce these metrics and discuss how we tailored 

them to ASD models. Furthermore, we show how the lines of code metric and the 

maintainability index are collected.  

   We start by introducing Halstead metrics. The metrics measure the cognitive load 

of a program which is the mental effort used to understand, maintain and develop the 

program. The higher the load, the more time it takes to design or understand it, and the 

higher the chances of introducing bugs. Halstead considered programs as implementation 

of algorithms, consisting of operators and operands. His metrics are designed to measure 

the complexity of any kind of algorithms regardless of the language in which they are 

implemented. Halstead metrics use the following basis measures: 

and only if there is a sequence σ ∈ I* distinguishes M and N, AM(σ) ≠ AN(σ). 

 n1: the number of unique operators,  

 N1: the number of occurrences of operators,  

 n2: the number of unique operands,  
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 N2: the number of occurrences of operands,  

 n = n1 + n2: the model vocabulary,  

 N = N1 + N2 the length of the model.  

For any ASD model we consider the following to be operands: 

 state variables used as guards,  

 states of the state machine,  

 data variables in events and actions.  

We consider the following to be operators:  

 events (calls, internal events and stimuli call-backs) and actions (all responses 
including return values and call-backs),  

 operators on state variables such as not, and, or, >, < (value of variable is stored 
and retrieved), and $ (literal value).  

The basic measures are then used to calculate the metrics below:  

 Volume: V = N ∗ log2n,  

 Difficulty: D = (n1/2) ∗ (N2/n2),  

 Effort: E = D ∗ V denotes the effort spent to make the model,  

 Time required to understand the model: T = (E/18) (seconds),  

 Expected number of Bugs: B = V /3000.  

The volume metric V considers the information content of a program as bits. 

Assuming that humans use binary search when selecting the next operand or operator to 

write, Halstead interpreted volume as a number of mental comparisons a developer would 

need to write a program of length N.  

   Program difficulty D is based on a psychology theory that adding new operators, 

while reusing the existing operands increases the difficulty to understand an algorithm.  

   Program effort E measures the mental effort required to implement or comprehend 

an algorithm. It is measured in elementary mental discriminations. For each mental 

comparison (and there are V of them), depending on the difficulty, the human mind will 

perform several elementary mental discriminations. The rate at which a person performs 

elementary mental discriminations is given by a Stroud number that ranges between 5 and 

20 elements per second. Halstead empirically determined that in the calculation of the 

time T to understand an algorithm this constant should be adjusted to 18.  

   Finally, the estimated number of bugs B correlates with the volume of the software. 

The more the size increases, the more the likelihood to introduce bugs. Halstead 

empirically calculated the estimated number of bugs by a simple division by 3000.  

   We calculate the lines of code metric based on not only the total number of rows in 

the model but also the number of actions in the Actions list. Therefore, each action counts 

as 1 line. For instance, the specification of the Door interface model contains 4 LoC.  
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   The original maintainability index (MI) of source code is calculated based on V, 

LoC and CC of the source code [5]. It indicates whether it is worth to keep maintaining, 

modifying and extending a program or to immediately consider refactoring or redesigning 

it. 

   Microsoft incorporated the MI in the Microsoft Studio environment. We used the 

formula of Microsoft to calculate the MI of ASD models. The formula is defined as 

follows: 

MI = MAX(0,(171 − 5.2 ∗ ln(V) − 0.23 ∗ ACC −16.2 ∗ ln(LoC)) ∗ 100/171) 

   The formula produces a number between 0 and 100, where 20 or above indicates 

good and highly maintainable source code.  

Application to the Door models  

   Table 1 lists the volume (V), expected number of bugs (B), difficulty (D) and time 

(T in seconds) metrics of the three ASD models of the Door system. 

 

Table 1: METRICS OF DOOR CONTROLLER MODELS 

The table is self-explanatory. Notable is the time required to understand the models. 

The reader of this paper is expected to read and understand the specification of the Door 

design model in about 210 seconds. All models exhibit a maintainability index of 20 and 

above, hence they are highly maintainable. The rest of the data provided in the table is 

self-explanatory. 

5. OPTIMAL VALUES AND RECOMMENDED LIMITS OF METRICS  

   In this section, we propose limits of metrics for good quality interface and design 

models. The limits were established after carefully analyzing and reviewing over 615 

interface and design models built for a large photolithography system, developed by 

ASML [1]. The limits were proposed after iterative review meetings and alignments with 

various engineers who owned and developed the models. 

 

Table 2 OPTIMAL VALUES OF METRICS FOR ASD MODELS 
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   Table 2 lists all metrics and the advised limits in our industrial context. As 

depicted in the table, the limits of the metrics for interface and design models are similar 

except for the LoC metric.  

   In our industrial context, the CC of a module written in C++ should not exceed 10. 

If source code exhibits a CC between 10 to 40 then the code should be refactored while if 

it is more than 40 then the code is end-of-life and has to be rewritten again in a simpler 

way. This CC limit may vary from one organization to another.  

   The reason that the limits of CC for models are raised compared to the CC for 

source code is that the metrics are collected at the level of models. We found that the 

tabular representation of the model raises the abstraction level and increases the 

understandability of the software artifact compared to source code. Models with a CC less 

than 30 were easy to understand when reviewing the tabular format of the models.  

   Similarly, designers were reasonably comfortable reviewing models that exhibit an 

ACC of less than 20. For the size metric, we used the limit suggested by VerifySoft [19] 

and observed that models exceeding 8000 are big in size. Finally, the thresholds of MI 

were chosen as used by Microsoft.  

   In our industrial context, we recommend that verification time (or waiting time for 

the model checker during debugging) should not exceed 1 minute. The reason is that we 

want to prevent that productivity of developers is hindered by the model-checking 

technology.  

   Design and modeling are creative processes and having good metrics of a model 

does not always mean that the underlying design is good. It is possible that certain models 

exhibit metrics within the accepted limits while mixing the level of abstractions with 

inappropriate decomposition of components and mixed responsibilities. While metrics 

can help detecting bad smells and decays in early design phases, additional experts’ 

reviews are still needed to assess the overall design quality.  

6. DETAILED DATA ANALYSIS  

In this section we detail the application of the proposed metrics and the 

recommended limits to measure and evaluate the existing ASD models, see Table 3. In 

order to make the process of data analysis and collection of the models more efficient, we 

built a tool that automatically extracts the metrics and visualize the results graphically. 

The tool is compatible with ASD:Suite version 9.2.7. We used the tool to extract metrics 

from 615 ASD interface and design models, developed in four different projects, within 

the period of 2008 until the end of 2015. 
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Table 3 SUMMARY OF STATISTICAL DATA OF DEVELOPED MODELS 

   Table 3 provides collected metrics data about the models. The total number of 

interface models is 348 while there are 267 design models. Row 3 and 4 list the average 

CC and ACC measures for the models. In row 5 the total volume or size of models is 

depicted. Row 6 lists the total number of lines of code in the models while the last row 

lists the total number of lines of the generated C++ code excluding blank lines. 

 

 

Table 4 ANALYSIS OF METRICS VALUES 

   We separated ASD interface models from design models and then carefully 

evaluated them in isolation. After that, we ordered the models according to CC, ACC and 

volume, to sort the models based on their complexity and size. The purpose of sorting the 

models is to capture the complex and big models that are present in our archive to 

refactor and improve these models. The data analysis of these models is summarized in 

Table 4. 

 

   In summary, the analysis revealed that over 22% of the models are relatively 

complex based on the CC metric and the models should be refactored to reduce 
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complexity. Considering the ACC metric over 10% of the models should be refactored to 

simpler models. We discuss the relation between CC and ACC shortly. With respect to 

size, we considered the volume and LoC metrics. Over 15% of the models are big in size 

and should be split into smaller models. Similarly, over 15% of the models include many 

lines of code. Most of these big models exhibit also high complexity metrics; therefore, 

improving one metric will consequently improve the other metrics. 

   All models were verified in less than 1 minute except one model which took about 

5 minutes from the model checker. This model is also the biggest and the most complex 

model compared to others. The reason that all models were verified in a short time is that 

the execution of the components is configured to be single-threaded; therefore, there is no 

concurrency that leads to the generation of big state spaces. 

   The data and results of our analysis are communicated to the development teams 

together with the metric extraction tool to facilitate repeating the experiments. The teams 

appreciated the work since it helped them uncover hidden complex and big models. A 

team of one of the projects planned refactoring tasks to gradually improve the quality of 

complex models. For newly started projects, developers frequently check the metrics of 

their models to address any issue early during the modeling phase and before final 

delivery of the models. 

 

 

Fig. 8. Representing a stateless machine as a flower-shape (CC) or a mouse ear 

(ACC) 

   One observation during the data analysis is that not all models with high CC are 

really complex to understand. We discuss this observation by comparing CC and ACC of 

an example specification and discuss how the ACC metrics provided more insight in 

complexity. Consider Figure 8. At the left of the figure a stateless machine accepts N 

events. If we set N to 31 (meaning that 31 different events are accepted by the machine) 

then CC = 31 while ACC = 1. Therefore, from the CC perspective the state machine is 

considered to be moderate in complexity since it exceeded the complexity limit, we set 

before as a guideline. 

   In fact, all models that exhibit a flower-shape behavior are not very complex but 

they may be rather big because the interface is verbose with many events. These 

machines are relatively simple to understand since they just consume input events in a 

single state. This type of models exhibits a relatively very low ACC metric. Correlating 

CC and ACC can help developers detecting interfaces that include many different events 
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that have actually the same behavior. In hindsight, it indicates to developers the need to 

split the interface early and categorize the events into smaller models. 

 

 

Fig. 9. Complexity of interface models of components sorted by ACC 

 

   Figure 9 depicts the CC and ACC of interface models of a number of components 

in one project. model 07 gives an example of a flower-shaped interface model with high 

CC and low ACC. By reviewing the contents of the model, we realized that the interface 

contains many events that should be categorized and split into smaller interface models. 

Notable are model 05 and model 06 which exhibit similar metrics. After reviewing the 

models, we found that they are isomorphic in structure (they model 2 physical sensors of 

the same type with different ids). An action was taken to combine the two models in one 

and parametrize the ids of the sensors. 

   We observed that Halstead T and E metrics are very controversial. We found that 

these metrics provide good estimates for models that are within the recommended size 

limit of 8000. For some models that exceed this limit the metrics are not very accurate. 

Empirical experiments are needed to adapt the formula for this type of models. 

7. Metric Validation 

   The validation of a metric is done from two perspectives. The first perspective 

considers the metric and the views of the engineers and the second considers only the 

metric. To validate if a metric measures what it intends to, we performed an empirical 

validation. This validation is described in Section 7.1 which addresses the survey and the 

statistical framework used to gather and analyze the results. To validate a metric itself, we 

propose to validate a metric against a set of formal mathematical properties, see Section 

7.2. These properties are presented by Elaine Weyuker [21] and she argues that an 

empirical validation is not sufficient to assess whether a metric is useful. 
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7.1 Empirical Validation 

   The view on what is good quality is different per engineer. Specifically, different 

outcomes have a different meaning for each engineer. For example, for one engineer an 

outcome of five for the action list size in the response list of ASD tables is fine and for 

another engineer it is too high. This difference can be caused by the differences in 

knowledge, design style, experience, and role within the organization, among others. A 

validation of the metrics can be performed by interviews and review meetings. These 

meetings take time and effort, since engineers need to reach a consensus, which is needed 

for a metric to support an engineer during development. Reaching this consensus needs to 

be done per metric. 

   Instead of reaching a consensus for each metric, we capture the views of the 

engineers once and use them to validate multiple metrics (at this moment or in the future). 

An empirical approach intends to do precisely that. Our approach is inspired by the 

approach from Jorge Cardoso [21] (Cardoso), which was inspired by M.V. Zelkowitz & 

D.R. Wallace [23] (Zelkowitz et al.) and D.E. Perry, A.A. Porter, & L.G. Votta [24] 

(Perry et al.). The approach is divided in six main activities, which are addressed in the 

following paragraphs. These activities are Research Context, Hypotheses, Study Design, 

Threats to Validity, Data Analysis and Presentation, and Results. 

Research Context The goal of the study is to validate the complexity metrics of 

ASD models discussed above and start with building up a reference set for future 

validations. 

   The specific metrics under consideration are the CC, the ACC, the HC, and the MI. 

These metrics are presented in a previous article [19] and are reviewed by the engineers 

within ASML and peers from The Institute of Electrical and Electronics Engineers [19] 

(IEEE). 

 

Hypotheses Before the study is set up and performed, it is important to know and to 

state what we intend to evaluate. The hypotheses are statements that represent formally 

what is under evaluation. We present two hypotheses, an abstract and a concrete 

hypothesis. The abstract hypothesis indicates in general terms the question we want to 

answer. The concrete hypothesis is derived from the abstract hypothesis and can be used 

to test if the hypothesis holds. Our hypotheses do not reference a specific metric, since we 

validate multiple metrics individually and for each metric a similar hypothesis is tested. 

Therefore, we use the wording “candidate metric”. 

       Abstract Hypothesis: The candidate metric gives an indication of the complexity 

of a model.  

      Concrete Hypothesis: There is a significant correlation between the candidate 

metric and the subject’s rating of the complexity of a model. 
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Study Design After the statement of the hypotheses, the study is set up and designed. 

The study design is a detailed plan for collecting the data, analyzing it, and testing the 

hypotheses. The design is as follows:  

       Variable Selection: Typically, there are two kinds of variables: independent and 

dependent. The independent variable is the cause of the effect. The dependent variable is 

dependent on Metrics for independent variables and changes when the independent 

variables change. In our study, the structure of the model is the independent variable. The 

dependent variable is the complexity of the model, which varies when the structure of the 

model changes. 

Subject Selection: The subjects in the study are professional engineers from ASML. 

These engineers are part of different departments and have different roles as well as 

experience levels. All participants are regular ASD users. Specifically, most participants 

use ASD on a weekly basis. The population consists of the 22 participants of which there 

are: 

 9 developers, 14 designers, 3 architects, and 3 testers. [multiple roles possible, 1 
unknown]  

 1 undergraduate, 9 graduates, and 8 post-graduates. [4 unknown] 

 5 daily users, 10 weekly users, 4 monthly users, and 2 irregular users. [1 
unknown]  

 9 experienced users, 5 not inexperienced nor experienced users, 3 
inexperienced users. [5 unknown]  

 10 more experienced, 5 at same level of experience, and 5 less inexperienced 
participants compared to their direct colleagues. [2 unknown] 

 

Note that, to alleviate threats to validity we excluded any participant who uses 

ASD in the context other than constructing real production models, such as students or 

researchers. 

Experiment Design: The models under consideration are ASD models randomly 

selected from a set of over a 1,000 production models based on the measured complexity. 

The production models were analyzed by computing the CC and ACC metrics. The 

results of the corpus analysis can be found in [20]. The CC and ACC metrics measure the 

independent variable of our study. Several intervals were constructed based on the 

thresholds presented in [19]. All analyzed models were categorized based on these 

intervals. From each interval, one model was randomly selected to make sure that all 

variations of measured complexity are under consideration. All selected models were 

analyzed on the other metrics to verify that there was variation in the outcomes. The total 

number of selected models is 30. 
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   The dependent variable, the observed complexity, was measured by scores and 

labels. The models were rated by the participants by providing a score and a label. The 

scores need to be between 0 and 100, where 0 indicates “no complexity” and 100 “highly 

complex.” In addition to the scores, the participants gave one of the five labels explicitly 

indicating the level of perceived complexity, ranging from “no complexity” to “highly 

complex”.  

   Most participants rated the models individually in two sessions, one per location. 

The participants were aware of the setup of the survey and instructed to not share 

information with each other during the sessions. The participants had unlimited time to 

rate all the models. A handful of participants was not able to join the sessions and 

therefore rated the models at their own convenience. 

Threats to Validity There are a number of factors that can influence the study and 

its results or that limit the ability for interpretation. These influences are called threats to 

validity and the relevant ones are presented in this paragraph 

     Construction Validity: All the measurements of the dependable variable are 

subjective and based on the perception of the participants. The participants in this study 

are familiar with ASD and therefore we think that their ratings reflect their views on 

complexity 

The measurements of the independent variable can also be considered as 

constructively valid, since they measure the structural interaction between elements of the 

model, which is in line with complexity theory. Additionally, the metric was reviewed by 

a number of peers. 

The method we used is partially subject to the mono-method bias, bias referring to 

measures and observations in only one way. The dependent variable is only measured by 

the views of the engineers. The participants rated the model in two ways, which partially 

mitigates the mono-method bias. To mitigate it, other sources of complexity aspects can 

be added in the future, such as number of modifications of the model. 

   Since the models were selected from the set of production models, participants 

could fall into the trap of evaluation apprehension. Participants could rate their own 

models with a lower score than they would do for other models with the same complexity. 

To mitigate this, participants and models are selected from different departments. For 

each model the majority of participants is not familiar with it. 

   Internal validity: Threats to internal validity compromise our confidence in 

something about the relationship between the dependent and independent variable. The 

effects of confounding variables, variables that influence the dependent variable but are 

not in the scope of the study, are typically considered as threats to internal validity. 

Example effects are the learning effect and the fatigue effect. 

   The learning and ordering effects are relevant for our study. The learning effect is 

the effect on the study where participants improve their results or performance because 
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they are used to the experiment. The ordering effect is the effect where the ratings of 

models later in the survey are biased, since they are compared against models earlier in 

the survey. To mitigate both effects, each participant received a random ordering of the 

models. 

   The number of models that was selected was based on the assumption that a 

model could be rated in one to one-and-a-half minutes. This would mean that all models 

could be rated in 45 minutes to one hour and therefore the effects of fatigue would not 

occur. During the study we observed that most participants needed more than one hour 

and some needed even three hours to complete the survey. The random ordering of the 

models partially mitigates the effects of fatigue, since all models have an equal 

probability to be subject to these effects. The focus of the survey was on complexity, but 

the participants were asked to also rate the models on other quality attributes, such as 

readability and cohesion. The quality attributes more to the right of the survey are more 

likely to be subject to the effects of fatigue and therefore findings for those attributes 

should be treated with care. 

    External Validity: Threats to external validity compromise our confidence in the 

applicability of the results. We identified two threats to external validity. Namely, the 

subject selection and the ecological threat. The subject selection limits the ability to 

generalize the results to other engineers within ASML. The participants were selected 

based on their familiarity with ASD. Therefore, we cannot generalize the findings for 

other engineers, who are abundant within ASML. 

   The other threat to external validity, ecological threat, limits the generalization of 

the findings to other domains. The selected models are taken from the set of production 

models and therefore only address the domain of ASML. The findings might apply to 

other domains, but this needs to be further investigated. 

Data Analysis and Presentation The ratings of the participants can be analyzed 

with two approaches, quantitative and qualitative. Since the participants rated the models 

with a score of 0 to 100, we selected a quantitative analysis. The labels are used to 

perform a qualitative analysis of the ratings. 

      Analysis of the Scores: As mentioned earlier, our goal is to determine if a 

significant correlation exists between the outcomes of the candidate metric and the 

subject’s rating of the complexity of a model. Since the ratings are distribution-free, the rs 

is used to determine the correlation. The rs is a non-parametric statistic used to show the 

relationship between two variables, which are expressed as ranks (the ordinal level of 

measurement). The coefficient is a measure of the ability of one variable to predict the 

value of the other. We use the rs to correlate the ratings of a participant to the outcomes 

of the candidate metrics. To use the rs, a null hypothesis is needed. We used the following 

null hypothesis: 
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H0: there is no correlation between the candidate metric and the subject’s rating of 

the complexity of a model. 

The probability that the null hypothesis would be erroneously rejected is controlled 

by the confidence level. We used the confidence level of 95% (indicated by α = 0.05). We 

reject the null hypothesis if rs > 0.375. The constant is based on the degrees of freedom of 

our study, which is 28, and the α. 

 

 

Table 5: rs between the participant’s rating and the outcomes of the candidate metrics 

 

(Note) Blue cells indicate rejection of the H0 (> 0.375). Candidate metrics are 

Cyclomatic Complexity [2, 3] (CC), Structural Complexity [3] (ACC), Halstead 

Complexity [4, 3] (HC), and Maintainability Index [5, 3] (MI). 

   Analysis of the Labels: The qualitative analysis of the labels is used to determine 

the thresholds for the candidate metric. Per model we compute the number of participants 

who rated it with a specific label. In other words, we count how often a specific label is 

given to a specific model. 

   If a label receives the absolute majority, the half or more, of the occurrences, then 

we consider the label as significant. If the number of occurrences is between the uniform 

share, total number of participants divided by the number of labels, and the absolute 

majority, then we consider that the label might be significant. Based on the significant 
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labels, we extract thresholds. These thresholds can be used to assess the complexity of the 

model and can give a meaning to the outcomes. 

Results Table 5 presents the rs between the ratings of the participant and the 

outcome of the candidate metric. The rs is presented for each participant. The last row 

presents the percentage of significant correlations. The candidate metrics are the CC, 

ACC, HC, and MI. The null hypothesis is rejected if the rs is above 0.375. The cell is 

colored blue for the participants for which the H0 is rejected. Note that for some 

participants we observed a negative correlation. The reason for this is that their ratings 

were reversed. For them 100 meant no complexity and 0 highly complex. From the 

results we can observe that 94.12% of the participant ratings correlates significantly with 

our candidate metrics, except for the HC. Therefore, we can conclude that the CC, ACC, 

and MI indeed measure the complexity of a model. Note that for the MI metrics the 

correlation is a negative correlation. 

 

Table 6: Occurrences of a label for a model. Blue cells indicate significant labels and 

light blue might be significant labels. 
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   Table 6 presents the number of occurrences of each label given by the participants for 

each model. The outcomes of the candidate metric are also presented. If a label is 

significant, absolute majority of the occurrences, the cell is colored blue. If a label might 

be significant, the number of occurrences is more than the uniform fraction, the cell is 

colored light blue. From the results we see that for each model at least one label might be 

significant or is significant. Based on these labels we can extract thresholds. For 

convenience we order the table based on the outcome of the candidate metric. The 

extraction of the thresholds is done by eyeballing the table. A statistical approach could 

be used instead, but we did not investigate possible approaches due to time limitations. 

Table 7 orders the models based on the outcome of the CC metric. Based on this table we 

could extract the following (example) thresholds: 

• 0 ≤ cc < 30: Low complexity.  
• 30 ≤ cc < 60: Moderate complexity.  
• 60 ≤ cc < ∞: High complexity 

 

Table 7: Occurrences of a label for a model ordered by the outcome of the CC metric. 

Blue cells indicate significant labels and light blue might-be-significant labels 
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7.2 Formal Validation  

In addition to the empirical validation, we can also validate a metric against a set of 

formal mathematically properties. Weyuker proposed a set of nine mathematical 

properties that a complexity metric should have. Since the focus of our metrics is about 

complexity, we summarize the properties in the next paragraphs.  

Outcome Differences The first property states that there should be programs for 

which the metric has a different outcome. If for all programs the outcome is the same, it is 

neither useful nor practical. The reverse is often also not useful, where all items have a 

different outcome. Essentially, the metric should not be too coarse nor should it be too 

fine. So, the second property strengthens the first by considering the same outcome only 

occurs for a limited number of programs. Formally, it states that for an outcome c, there 

are finitely many programs for which the metric maps them to c. In addition to the second 

property, the third property states that there are distinct items with the same outcome. The 

first three properties together make sure a metric is neither too coarse nor too fine. 

Implementation Abstraction The first three properties do not consider the fact 

that programs have semantics and syntax. Property four reflects the fact that we are 

dealing with syntactic metrics. The intuition behind property four is that even though two 

programs compute the same function, the details of the implementation determine the 

complexity. Property four states that there exist behaviorally / semantically the same 

programs with different outcomes. 

Items and Their Components The complexity of a program originates from its 

implementations and the interactions between the components the implementation is 

composed of. Property five addresses this aspect, by stating that the complexity of two 

programs should be less than or equal to the complexity of the composite of the two items. 

We do not expect the complexity to decrease by composing programs. 

On a related line of thought, we would expect that the complexity can increase by 

composing programs. Specifically, we expect that if there is an interaction between the 

implementations of two composed programs, that the complexity is different. This is what 

property six states; there is a program for which the complexity of the composite with one 

program (Q) is different than for the composite with another program (P), where the 

programs P and Q have the same complexity. 

Property nine is a slight strengthening on properties five and six, in some cases. 

Property nine indicates that for some programs it holds that the complexity of the 

composite is larger than the sum of the complexities. The intuition behind property nine is 

that the interactions between the items contribute to the complexity of the composite. 

Implementation Interactions We discussed that the complexity is dependent on 

the interactions of the implementation. Property seven takes this a bit further and states 

that the reordering of an implementation leads to a different outcome. A different internal 

ordering leads to different interactions and therefore a different outcome. 
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Measure the Syntax The metric is defined on the syntax and not on the semantics. 

Therefore, property eight states that if we rename a program or parts of its 

implementation then the outcome remains the same. A concrete example of a metric that 

satisfies this property is a metric that is robust against the difference in names of variables 

or functions. 

8. CONCLUSIONS AND FUTURE WORK 

As industry is rapidly migrating towards model-based development, it is becoming 

urgent to establish means to measure the quality of models since they form the main 

software artifact in the modeling paradigm. In this article we proposed a number of 

metrics for ASD models which are state machines specified in a tabular format. As a 

result of applying our new metrics, we could measure the quality of these models using 

the new metrics. This introduces a basis to introduce new metrics for other type of models. 

   An apparent limitation of our work is that we only considered the structural 

complexity of models. The added complexity of introducing guards in the specification is 

not considered. Guards can have a similar complexity effect as introducing states. Finally, 

the results of this work reveal the importance and need for metrics at the model level. 

Based on the metric feedback, and subsequent review of the flagged models, interesting 

patterns and opportunities for model improvement were identified. Moreover, the results 

reveal that more work is needed to extend the set of metrics making them also less 

sensitive or biased for certain patterns and aspects. 
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