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ABSTRACT 

This paper deals with target tracking using α β Tracker. Some of the 
theoretical properties of this classical tracker are discussed and the 
problem of selecting the suitable α and β parameters is studied. Two 
well known classical methods of estimating α and β parameters are 
veiwed and another three new algorithms of estimating these 
parameters are suggested. Some simulation experiements are 
performed in the cases of white noise and color noise to check the 
accuracy of the classical as well as the new ones. The performance of 
our new suggested algorithms seems to be very well. 
 

 
1. INTRODUCTION  
The α β tracker is a very simple filter still used in many tactical military 
systems although it has been used firstly in tracking radar at the early of 
1960’s. This tracker has an excellent performance for tracking non-
maneuvering targets. Because of its simplicity, it is often considered as a 
candidate filter (Bhagavan and Polge [1974] and West and Blair [2001]).  

 α β tracker is one of the type fading memory filters with fixed gain and it 
can be implemented recursively. i.e., data received in the past are included in 
the present estimates (Hanna [1989]). This tracker is one step ahead predictor 
of position that uses the current error in order to predict the next position. 

 Sklansky, in his seminal paper, analyzed the behavior of an α β tracker 
(Sklansky [1957]). His analysis of the range of values of the smoothing 
parameters α and β which resulted in a stable filter constrained the 
parameters to lie within a stability triangle. He also derived closed form 
equations to relate the smoothing parameters for critically damped transient 
response and the ability of the filter to smooth white noise. Following his 
work, Benedict and Brodner [1962] used calculus of variation to solve for an 
optimal filter which minimizes a cost function which is a weighted function 
of  the  noise  smoothing  and  the  transient ( maneuver following )  response 
bringing a constraint to the optimal filter. Schooler [1975], discussed the 
inaccuracies of α β tracker and modeled them; then he provided an optimal α 
β tracker for the systems  with modeled inaccuracies.  Lefferts [1981] studied  
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the correlation regions assumed of independent and Gaussian distributed error. He used a 
dynamically varing correlation region to yield improved tracking performance. 

In 1990’s there were many studies and researches related to α β tracker and further 
improvement was obtained, (see for example Yosko and Kalata [1992], Aubree et al. 
[1995], Llinas et al. [1998] and West and Blair [2001]). Anyway, tracking through α β 
tracker still is an attractive area, which needs rich analysis and improvement.  

The usefulness of α β tracker as compared to others with superior performance lies 
mainly in the ease of implementation and limited computational requirements. This means 
that it may be needed as a result of computational limitations if the sampling interval is 
short, or if many targets must be engaged (Leffertds [1981] and Hanna [1989]). α β tracker 
provides a good performance for non-maneuvering, constant velocity targets. It has the 
ability to deal with a maneuvering target if it is modeled as a constant – velocity system 
with random maneuvering. 

However, α β tracker is just one step ahead position predictor; this restricts the ability to 
predict the target path through next n steps of times. It has fixed coefficient parameters, so 
its gain is not adaptively hanged it has little capability to track severely maneuvering targets 
(Bhagvan and Ploge [1974] and Lefferts [1998]). 

It is well known that it is not possible to select smoothing parameters on line which are 
optimal in all cases, so it is frequently necessary to use several sets of smoothing 
parameters to achieve a practical system. The α β tracker however, is obtained by 
neglecting the acceleration term in the equation of motion, the manner that affects dealing 
with maneuvering targets. This work therefor, is trying to minimize the problem by 
selecting suitable values of α and β parameters, on line with minimum error. 
 
2. α β TRACKER 
The form α β tracker equations can be drived from Newton’s laws of motion. Consider the 
motion of point mass with constant acceleration. It is well known that this motion is 
described by integrating the Newton’s First Law. 

Let x(t) denotes the position of a point  mass at time t, then the equation of motion can 
be reduced to ( Llinas et al. [1998] ) : 
 

 
 
where x(0) is the initial position, v(0) is the initial velocity and a is the acceleration which is 
assumed here to be constant independent of time. Now, if the acceleration is negligible then 
the equation (1) can be written as: 
 

 
 

Assuming that we have measurements at discrete time points; say t =1,2,.. . Substituting 
the initial conditions x(0) and v(0) by the smoothed position xs and the smoothed velocity vs; 
respectively, then the following equation of one-step-ahead prediction is obtained ( Llinas 
et al. [1998] ) : 
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 where xp(t+1) is the 1st-step ahead predicted position at time t, 
            xs(t)     is the smoothed position at time t, 
            vs(t)     is the smoothed velocity at time t, 
            T         is the sampling time interval. 

 
The innovation, or prediction error, at time t is denoted by e(t) and defined as the 

difference between the measured position xm(t) and the predicted position xp(t). 
I.e.: 

m pe(t) x (t) x (t) ; t 1,2,..= − =                                                                    ( 4 )  
 

Assuming the ratio of the difference between the smoothed position and the predicted 
position to the innovation is a constant, say α acting as a smoothing parameter of the 
position and computed as: 

Hence, the smoothed position can be obtained from the following equation: 
 

 
 
 

 
 

Also similarly, the smoothed velocity can be obtained by using the well known physical 
law : velocity = distance / time , and letting : 
 

 
 
 

Then the smoothed velocity equation is given by: 
 

 
 
3. INITIALIZING THE α β TRACKER 
α β tracker is a recursive filter as the prediction equation (3) is in recursive form, this means 
that it needs to be initialized. Two measured target positions are required to determine the 
initial smoothed velocity, causing the target position prediction begins at the third time step. 
The measured position is considered to be the initial predicted target position till the second 
time step. The initial smoothed velocity is calculated as (Llinas et al. [1998]): 
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The first predicted position is then calculated as: 

p m sx (3) x (2) Tv (2) .= +                                                                        ( 10 )  
 
 

Figure (1) illustrates the track initialization. It is clear that the initial innovation is zero 
and the smoothing parameters have no influence of the initial prediction.  

 

 
Figure (1): Track Initilization. 

 
4. STABILITY ANALYSIS 
The regions of stability at different transient response characteristics of α β tracker can be 
specified in the α β space. Writing equations (3), (6) and (8) in the z-domain and 
substituting xs and vs into the prediction equation (3) yielding the transfer function of the α 
β tracker in the z-domain G(z) as follow ( Llinas et al. [1998] ) :  
 

 
 
which can be used to determine the region of stability of the α β tracker. Stability requires 
that roots of the characteristic polynomial lie within the unit circle in the z-domain. The 
characteristic polynomial is given by the denominator of equation (11). To prove that the 
roots lie within the unit circle, one can transform equation (11) into the w-domain, mapping 
the unit circle of the z-domain to the left half plane of the w-domain and applying one of 
the known stability criteria in continuos domain. Another approach is to check the stability 
directly in the z-domain using Jury’s Stability Test.  

The Jury’s Stability Test can be used to analyze the stability of the system without 
explicitly solving for the poles of the system. Therefore, it is used to determine the bounds 
on the parameters which result a stable transfer function in the z-domain. 

Llinas et al. [1998] showed the stability region of the α β tracker is defined by the 
following three constraints:    
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The characteristic polynomial is: 
 

 
 
and the roots of this characteristic equation are: 

 

 
 

Critical damping is obtained when z1=z2 i.e. when 
 

 
i.e. when  

 
i.e. when 

 
 

Equation (20) is valid for all α ≤ 1 and the system is oscillating if the poles in equation 
(11) contains a non-zero imaginary part.  

Llinas et al. [1998] have shown that when α > 1 , then the roots of the equation (15) are 
never negative so the above approach can not be applied. Hence, the final stability 
boundaries are: 

 

 

 
 
Figure (2) shows the stability region of α β tracker. 
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Figure (2): Stability Region of α β Tracker. 
 

5. CHOICE OF α AND β PARAMETERS 
In this section we describe the standard methods of selecting α and β parameters. Also, 
three new methods are suggested. 
 
5.1 CLASSICAL METHODS    
The classical α β tracker is designed originally to minimize the mean square error in the 
filtered position and velocity. The problem with α β tracker is that its design implies a 
compromise between good noise smoothing, i.e. required small α and β, and good 
maneuver following capability, i.e. required large α and β values (Hanna [1989]). One of 
the well known estimates of α and β parameters are (Llinas et al. [1998]) : 
 

 

 
 

Now, the main objective here is to use the possibility to change α and β parameters 
during confirmed tracking. Thus, the unknown target maneuvers must influence the α and β 
parameters by increasing swiftness or stability according as the target is accelerating or not 
(West and Blair [2001]). Hence, the other criterion for selecting the α and β parameters is 
based on the best linear track fitted to the radar data in a least squares sense. This is leading 
to use the evolutive parameters which are given as (Skolink [1981] and West and Blair 
[2001]): 
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5.2 NEW SUGGESTED METHODS 
In the last subsection, we have considered two classical methods for estimating α and β 
parameters. The first method (M1), based on selecting a given value of the parameter α 
from the interval (0, 1), usually near zero; say α=0.05 or α=0.01, and then the 
corresponding value of β is obtained from the equation (23b). The second method, (M2) 
based on calculating the estimated values of α and β as functions of the available number of 
measurements n. 

We describe now three suggested methods for estimating α and β. The first suggested 
method, method 3 (M3) is based on the two estimates of β obtained by the previous two 
methods. A linear combination of two estimated β from the equations (23b) and (24b) can 
be considered as alternative estimate and denoted by βLC .This suggested estimate is defined 
as : 

 
where w is a given weight such that  0 ≤ w ≤ 1 . The choice of w can be based on 
optimization strategies such as the minimization of the mean square error or the 
minimization of the mean absolute error. 

The statistical properties of βLC , like unbiasness and consistency, can be studied if the 
statistical properties of β~ and β ^ are known. If both β~ and β ^ are unbiased estimates of β, 
such that  

 
ˆE( ) E( ) E( )β = β = β  

and E( . ) is the expectation operator. Then, it is easy shown that βLC is also unbiased 
estimate of β, i.e., 
 

 
 

On the other hand, when we take the variance operator of both sides of (25), and 
assuming that β~ and β ^ are independent, then  

2 2
LC

ˆvar( ) w var( ) (1 w) var( )β = β + − β  
 
Hence, if β~ and β ^ are consistent estimates of β, then 

ˆvar( ), var( ) 0 as nβ β → →∞  
Therefore,  

LCvar( ) 0 as nβ → →∞  
and βLC  will be also consistent estimate of β. 

To avoid the arbitrary choice of α, and also to obtain good maneuver following 
capability, we can use the estimate (24a) for α, which is denoted by α^. 

The summary of the above discussion can be observed in the following algorithm. 
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ALGORITHM ( 1 ) : α β Tracking by Linear Combination Method M3. 
 

Step 1: Fix the value of α at α0 . 
Step 2: Calculate the value of β~ and β ^  from equations (23b) and (24b), respectively. 
Step 3: Search for optimal weight w, to obtain the optimal value of βLC. 

 
The second suggested method (M4) is called the adjusted α β tracker. In this method, 

we suppose that there is a moving window which moves through the measurements during 
α β tracker computations. Through the moving of the window, the optimal values of α 
parameter is found for the measurements inside the window with respect to the window 
innovation. The diagram in Figure (3) describes the adjusted α β tracker. 

Again, the value of corresponding β is obtained from equation (23b). The adjusted α and 
β parameters are then employed for the next stage of tracking. To decrease the computation 
time, the parallel approach maybe used in manner of calculating optimal α and β parameters 
for a given window in parallel way during α β tracker computations. However, the 
parallelism will be used clearly in the next suggested method. 
The summary of M4 can be observed in the following algorithm. 
 

 
 

Figure (3): α β Tracking with Adjusting through Window. 
 
ALGORITHM ( 2 ) : α β Tracking with adjusting through a window Method M4 

 
Step 1: Fix the values of α and β at α0 and β0 respectively. 
Step 2: Track by α β tracker. 
Step 3: While tracking, search for optimal α and β for a given window. 
Step 4: Adjust α and β parameters by those in step 3. 
Step 5: Go to step 2. 

 
The third suggested method (M5) is based on Parallel Processing principles. It is well 

known that Parallel Processing is a computer trend for improving processing speed by 

 
α β Tracker 

Find optimal α for the 
window 

Prediction

Error

Measurements 

Window  
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doing more than one function at the same time. This is depending on Parallel Computers or 
Parallel Processors (Wagih [1999]). The method M5 is called Parallel α β tracking, and it 
supposes that there are K α β trackers each one is a fixed gain tracker but with different α 
and β parameters. Tracking will be done through all those trackers in parallel manner and 
the prediction with lowest innovation will be considered as the best prediction in the mean 
square (or mean absolute) error sense   (see Figure (4)). The number of the trackers is 
constrained by hardware availability. Hence, as the number of the trackers increases, the 
prediction will be more accurate and vice versa. On the other hand, if the tracking lies 
between two neighbor trackers for long time, we can increase the trackers between them. 
However, if the time interval between two measurements (sampling rate) is not too small, 
M5 can be simulated in the sequential mode easily. 
The summary of M5 can be observed in the following algorithm. 
 

 
Figure (4): Parallel α β Tracking. 

 
 

ALGORITHM ( 3 ) : Parallel α β Tracking Method M5. 
 

Step 1: Prepare the K α β trackers with different α’s and β’s parameters. 
Step 2: Track with all K α β trackers. 
Step 3: At each time step, consider the prediction value with the lowest absolute error 

as optimal one. 
 
 

6. SIMULATION EXPERIMENTS 
In this section we try to check the performance of the trackers discussed in the last section 
through simulation approach. Ten sets of simulated radar data were generated, half of them 
were corrupted by Gaussian white noise and the others were corrupted by Gaussian colored 
noise. Each set of the data was treated by each five methods M1, M2, M3, M4 and M5. 

To specify the major of optimality, we need to measure the distance between the true 
position and the predicted position by each method. Usually, the Root Mean Square Error 
(RMSE) is used in this context which is obtained as: 
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Figures (5) and (6) show comparisons between actual, measured and predicted track 
using α β tracker by the five methods of selecting α and β parameters and for white and 
colored noised corrupting; respectively. Figures (7) and (8) as Tables (1) and (2) show the 
RMSE of these results in each case, again for white and colored noise corrupting; 
respectively. A quick look at these two tables indicates the efficiency of the suggested 
methods. It is clear that method M5 gives very lower RMSE than other methods.      

 

 
 

Figure (5): Tracking simulated measurements corrupted by white noise.  
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Figure (6): Tracking simulated measurements corrupted by color noise.  
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Figure (7): RMSE of the 5 methods – White Noise 
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Figure (8): RMSE of the 5 methods – Colored Noise 

 
 
Table (1): RMSE of tracking white noised simulated data by 5 methods of α β trackers. 
 

Experiment Coordinates M1 M2 M3 M4 M5 
X 28.4589 26.6355 26.6802 25.3460 10.4094 1 Y 291.7924 63.6673 66.8815 265.2983 17.7988 
X 45.8634 47.2913 46.9485 26.1398 11.0342 2 Y 299.7238 55.5100 59.1243 268.2146 18.2989 
X 34.2435 29.6414 29.7098 31.4221 10.1660 3 Y 296.4985 60.3253 63.7537 268.3542 17.0756 
X 40.6228 27.5558 26.8202 23.5749 11.5605 4 Y 299.8339 75.4845 78.4928 278.6082 19.1451 
X 50.5104 53.6469 53.1669 22.7810 11.9972 5 Y 307.2010 61.0965 64.9569 278.5191 19.2215 
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Table (2): RMSE of tracking colored noised simulated data by 5 methods of α β trackers. 
 

Experiment Coordinates M1 M2 M3 M4 M5 
X 43.7560 44.4713 44.0580 25.6035 17.0891 1 Y 292.9631 78.7142 79.2807 273.4808 21.6512 
X 77.0170 51.1982 50.0406 44.6987 17.2379 2 Y 277.4844 84.7149 84.5255 259.9784 22.3588 
X 43.2933 30.5868 29.9748 33.5310 17.4046 3 Y 295.8656 102.6156 102.3371 284.3615 21.0918 
X 36.7597 39.6073 39.6211 36.5744 18.2052 4 Y 306.6647 79.9087 80.7844 285.2135 23.2990 
X 49.1139 53.1412 52.7067 25.1383 16.5149 5 Y 300.8425 85.0407 85.7739 283.3336 21.0630 

 
 
7. DISCUSSIONS AND CONCLUSIONS 
In this paper we studied the classical α β tracker and focused our attention on the problem 
of selecting the α and β parameters. Five methods of selecting these two parameters were 
considered, two of them are classical, and the others are suggested by the authors of this 
paper. These five methods are tested through simulation technique and based on 
realizations of white and colored noise. The simulation exercise is applied on five different 
experiments. 

We start our discussion by considering the two classical methods M1 and M2, as the 
base for the purpose of comparison. Table (3) shows the averages of the differences 
between the RMSE obtained from each of the classical methods and each of the suggested 
new methods and when the noise is white. Table (4) shows these averages but when the 
noise is colored. It is quite obvious that these averages are positive in all cases except when 
we compare M4 with M2 in the Y-coordinate. In fact, a statistical paired t-test is applied on 
these differences and indicated a very highly significance difference in RMSE obtained for 
these comparisons. Hence, we may conclude that our suggested algorithms are significantly 
differing than the classical ones in the positive direction. 

In order to see the respective efficiency of the suggested algorithms with respect to the 
classical ones, we fix method M1 as the base. Then, we compute the percentage of change 
of RMSE of each of M3, M4, and M5 (RMSEMi ;i =  3,4,5 ) with respect to that of M1 
(RMSEM1 ), which is defined as 

 

 
 

Table (3): The averages of the difference RMSE of Table (1). 
 

Relative to Coordinates M3 M4 M5 
X 4.7713 14.0870 28.9063 M1 Y 232.2810 27.3819 280.7019
X 0.3343 11.8137 25.9207 M2 Y 3.5122 -208.4113 44.9087 
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Table (4): The averages of the difference RMSE of Table (2). 
 

Relative to Coordinates M3 M4 M5 
X 9.4102 16.8788 32.6976 M1 
Y 208.2237 17.4905 272.8713
X 0.5262 11.8695 26.5106 M2 
Y 0.5287 -191.0747 64.3061 

 
Tables (5) and (6) show the obtained values of PCi.1  and when the noise is white and 

colored; respectively. Obviously, algorithms M4 and M5 give high and positive PCi.1 
values, e.g., 10.9382 means that RMSE of M4 is 10.9382 % lower with respect to M1. 

From the previous tables we may draw a main conclusion that algorithm M5 is the best, 
then M4, and then M3. 

   
Table (5): The percentage (%) of change of RMSE with respect to M1 - white noise. 
 

Experiment Coordinates M3 M4 M5 
X 6.2501 10.9382 63.42301 Y 77.0790 9.0798 93.9002
X -2.3659 43.0050 75.94122 Y 80.2737 10.5127 93.8947
X 13.2396 8.2392 70.31263 Y 78.4978 9.4922 94.2409
X 33.9775 41.9663 71.54184 Y 73.8212 99.0708 93.6148
X -5.2593 54.8984 76.24815 Y 78.8552 9.4433 93.7430

 
Table (6): The percentage (%) of change of RMSE with respect to M1 - Colored noise. 
 

Experiment Coordinates M3 M4 M5 
X -0.6902 41.4857 60.94461 
Y 72.9383 6.6500 92.6098
X 35.0266 41.9626 77.61812 
Y 69.5368 6.3088 91.9423
X 30.7634 22.5492 59.79843 
Y 65.4109 3.8882 92.8712
X -7.7841 0.5041 50.47514 
Y 73.6571 6.9950 92.4025
X -7.3152 48.8163 66.37435 
Y 71.4888 5.8199 92.9987
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Appendix: List of Symbols. 

 
x Target position coordinate. V Target velocity. 
a Target acceleration. T Time instant. 
xp Target predicted position. xs Target smoothed position. 
vs Target smoothed velocity. T Time period between two scans. 
e Prediction error. xm Target measured position. 
α Position smooth parameter. Β Velocity smooth parameter. 
z Z-transform coefficient . G Transfer function. 
w Weight parameter in method 3.  N Number of measurements. 
K Number of αβ trackers in method 5. RMSE Root Mean Square Error. 

α  Estimated α by method 1. β  Estimated β by method 1. 

α̂  Estimated α by method 2. β̂  Estimated β by method 2. 

LCβ  Estimated β by method linear combination of methods 1 and 2. 
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  دراسة المعقب الفا بيتا باستخدام بعض الخورزميات الجديدة 
 وبيتالاختيار المعلمتين ألف 

  

  

 2 و محمد فضل عبداالله1خليل الوجيه
 

   جامعة ذمار– آلية الحاسوب و تقنية المعلومات -1
   جامعة عدن– آلية الحاسوب و تقنية المعلومات -2

  

  ملخص

  
ذا المعقب            تدرس هذه    ة له المقالة مسالة تعقب الهدف و ذلك بواسطة معقب ألفا بيتا، وتناقش بعض الخواص النظری
 هاتين المعلمتين ومن ثم اختيارتستعرض أولاً طریقتين تقليدیتين في .  المعلمتين ألفا و بيتاطریقة اختيارى مع الترآيز عل

تجرى تجارب بالمحاآاة على مشاهدات مولدة في حالتي التشویش الأبيض          . تقترح ثلاثة خوارزميات جدیدة لهذا الغرض     
  . رنة بالطریقتين التقليدیتينو الملون، وتظهر الخوارزميات المقترحة آفاءة جيدة مقا
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