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ABSTRACT 
 

In this note, we will determine, up to the conjugacy, all the 

maximal subgroups of  PSL(11, 2) by Aschbacher’s theorem. 

 

 
1. INTRODUCTION 
The purpose of this paper is to prove the following main theorem: 

 

Theorem (1.1): Let G = PSL(11, 2). If H is a maximal subgroup of G, then H 

isomorphic to one of the following subgroups: 

1. A group G(p) or G(9-), stabilizing a point or its dual, the stabilizer of a 

hyperplane. These are isomorphic to a group of form 2
10

. SL(10, 2). 

2.   A group G(l) or G(8-), stabilizing a line or its dual, the stabilizer of a 8-

space. These are isomorphic to a group of form 2
18

. (SL(2, 2) × SL(9, 2)). 

3. A group G(2-), or G(7-), stabilizing a plane or its dual, the stabilizer of a 

7-space. These are isomorphic to a group of form 2
24

. (SL(3, 2) × SL(8, 

2)). 

4. A group G(3-), or G(6-), stabilizing a 3-space or its dual, the stabilizer of a 

6-space. These are isomorphic to a group of form 2
28

. (SL(4, 2) × SL(7, 

2)). 

5. A group G(4-), or G(5-), stabilizing a 4-space or its dual, the stabilizer of a 

5-space. These are isomorphic to a group of form 2
30

. (SL(5, 2) × SL(6, 

2)). 

6. A Singer cycle subgroup H = ΓL(1, 2
11

 ). 

7. PΓL(2, 23). 

8. Mathieu group M24. 

 

Through this paper, ΓL(n, q) denote the group of all non-singular semi-

linear transformation of a vector space Vn(q) of dimension n over a field Fq 

with q is a prime power. The general linear group GL(n, q), consisting of the 

set of all invertible n×n matrices. In fact, GL(n, q) is a subgroup of ΓL(n, q) 

consisting of all non-singular linear transformations of Vn(q). The centre Z of 

GL(n, q) is the set of all  non-singular  scalar matrices.  The  factor   group  
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GL(n, q) / Z  called The projective general linear group which is denoted by  PGL(n, q). 

GL(n, q) has a normal subgroup SL(n, q), consisting of all matrices of determinant 1 called 

the special linear group. The projective special linear group PSL(n, q) is the quotient group 

SL(n, q) /(Z ∩ SL(n, q)). PSL(n, q) is simple, except for PSL(2, 2) and PSL(2, 3). 

PG(n-1, q) will denote the projective space of dimension n-1 associated with Vn(q). 

One, two and three- dimensional subspaces of Vn(q) will be called points, lines and planes 

respectively. An (n-1)-dimensional subspace shall be called a hyperplane. An element T  

GL(n, q) is called a transvection if T satisfies rank ( T – In ) = 1 and ( T – In )
 2 

= 0. 

A split extension ( a semidirect product ) A:B is a group G with a normal subgroup A 

and a subgroup B such that G = AB and A∩B = 1. A non-split extension A.B is a group G 

with a normal subgroup A and   G/A  B, but with no subgroup B satisfying G = AB and 

A∩B = 1. A group G = A B is a central product of its subgroups A and B if G = AB and 

[A, B], the commutator of A and B = {1}, in this case A and B are normal subgroups of G 

and A∩B ≤ Z(G). If A∩B = {1}, then  A B = AB. 

G = PSL (11, 2) is a simple group of order 

768105432118265670534631586896281600, thus |G| = 2
55

.3
6
.5

2
.7

3
.11.17.23.31

2
.73.89.127 

acting as a doubly transitive permutation group on the points of the projective space PG(10, 

2).  

 

2. ASCHBACHER’S THEOREM 
In this section, we will give some definitions before starting a brief description of 

Aschbacher’s theorem (2). 

 

Definition (2.1) : 
Let V be a vector space of  dimensional n over a  finite field q, a subgroup H of GL(n, q) is 

called reducible if it stabilizes a proper nontrivial subspace of  V. If H is not reducible, then 

it is called irreducible. If H is irreducible for all field extensition F of Fq, then H is 

absolutely irreducible. An irreducible subgroup H of GL(n, q) is called imprimitive if there 

are subspaces V1, V2, …, Vk, k ≥ 2, of  V such that V = V1  …  Vk and H permutes the 

elements of the set { V1, V2, …, Vk} among themselves.  When H is not imprimitive then it 

is called primitive. 

 

Definition (2.2):  

A group G ≤ GL(n, q) is a superfield group of degree s if for some s divides n with s  1, 

the group G may be embedded in L(n/s, q
s
). 

 

Definition (2.3) :  

If the group G ≤ Gl(n, q) preserves a decomposition V = V1V2 with dim(V1) ≠ dim(V2) 

then G is a tensor product group. 

Suppose that n = r
m
 for m  1. If G ≤ Gl(n, q) preserves a decomposition V = V1 … 

Vm with dim( Vi ) = r for 1 ≤i ≤ m, then G is tensor induced group. 
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Definition (2.4):  

A group G ≤ Gl(n, q) is subfield group if there exists a subfield 
oq qF F  such that G can be 

embedded in GL(n, qo) . Z. 

Definition (2.5):  

A p-group G is called special if Z(G)= G  and is called extraspecial if also |Z(G)| = p. 

 

Definition (2.6) : 
Let Z denote the group of scalar matrices of G. Then G is almost simple modulo scalars if 

there is a non-abelian simple group T such that T ≤ G/Z ≤ Aut(T), the automorphism group 

of T. 

A classification of the maximal subgroups of GL(n, q) by Aschbacher’s theorem (2 ), 

which may be briefly summarized as follows:  

 

Result (2.7) (Aschbacher’s theorem):- ( 2 ). 

Let H be a subgroup of GL(n, q), q = p
e
 with the center Z and let V be the underlying n-

dimensional vector space over a field q. If H is a maximal subgroup of GL(n, q), then one 

of the following holds: 

C1:- H is a reducible group. 

C2:- H is an imprimitive group. 

C3:- H is a superfield group. 

C4:- H is a tensor product group. 

C5:- H is a subfield group. 

C6:- H normalizes an irreducible extraspecial or symplectic-type group.  

C7:- H is a tensor induced group. 

C8:- H normalizes a classical group in its natural representation. 

C9:- H is absolutely irreducible and H /(HZ)is almost simple.  

 

To prove theorem (1.1) by using Aschbacher’s theorem ( Result (2.7) ), first, we will 

determine the maximal subgroups in the classes C1 – C8 of Aschbacher’s theorem ( Result 

(2.7) ): 

 

3. CLASSES C1–C8 OF ASCHBACHER’S THEOREM ( RESULT (2.7) ) 
3.1 The subgroups of C1:  

Let H be a reducible subgroup of G and W an invariant subspace of H. If we let d = dim 

(W), then1 ≤ d ≤ 11. Let Gd = G(W) denote the subgroup of G containing all elements fixing 

Was a whole and H  G(W). with a suitable choice of a basis, G(W) consists of all matrices of 

the form 
A B

0 C

 
 
 

where A and C are d × d and (11-d) ×(11-d) non-singular matrices of 

determinant 1, where B is an arbitrary d×(11-d) matrix. Gd is isomorphic to a group of the 

form  2
d(11-d) 

( SL(d, 2) ) × ( SL(11-d, 2) ). 

which give us the following reducible maximal subgroups of G: 

1. A group G(p) or G(9-), stabilizing a point or its dual, the stabilizer of a hyperplane. These 

are isomorphic to a group of form 2
10

. SL(10, 2). 
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2. A group G(l) or G(8-), stabilizing a line or its dual, the stabilizer of a 8-space. These are 

isomorphic to a group of form 2
18

. (SL(2, 2) × SL(9, 2)). 

3. A group G(2-), or G(7-), stabilizing a plane or its dual, the stabilizer of a 7-space. These 

are isomorphic to a group of form 2
24

. (SL(3, 2) × SL(8, 2)). 

4. A group G(3-), or G(6-), stabilizing a 3-space or its dual, the stabilizer of a 6-space. 

These are isomorphic to a group of form 2
28

. (SL(4, 2) × SL(7, 2)). 

5. A group G(4-), or G(5-), stabilizing a 4-space or its dual, the stabilizer of a 5-space. 

These are isomorphic to a group of form 2
30

. (SL(5, 2) × SL(6, 2)). 

Which prove the points (1), (2), (3), (4) and (5) of the main theorem (1.1). 

 

3.2 The maximal subgroups of C2:  

If H is imprimitive, then H preserves a decomposition of V as a direct sum V = V1…Vt, t 

>1, into subspaces of V, each of dimension m = n/t, which are permuted transitively by H, 

thus C2 are isomorphic to GL(m, q):St. 

Consequently, there are no C2 groups in PSL(11, 2) since 11 is a prime number. 

Note:  if q  2, then there exist an imprimitive group G() of order n! (q-1)
n-1

 preserving 

a n-simplex points of PG(n-1, q) with coordinates in Fq and G() interchanges them. 

Consequently, there is no G() subgroup in PSL(11, 2), since q = 2 is not greater than 2. 

 

3.3 The maximal subgroups of C3:  

If H is (superfield group) a semilinear groups over extension fields of GF(q) of prime 

degree, then H acts on G as a group of semilinear automorphism of a (n/k)-dimensional 

space over the extension field GF(q
k
), so H embeds in ΓL(n/k, q

k
), for some prime number 

k dividing n.  

Consequently, there are no C3 groups in PSL(11, 2) since 11 is a prime number. 

Definition (3.3.1) : A Singer cycle of GL(n, q) is an element of order q
n
-1.  

Result (3.3.2):  ( 14 ) ,  ( 20 ) and  ( 31 ). 

If n is a prime number, then there exist a Singer cycles group H = ΓL(1, q
n
 ) of order d

-

1
(q

n
-1)/(q-1), where d = gcd(n, q-1) and H is irreducible maximal subgroup of PSL(n, q) 

which it is the normalizer of the (cyclic) multiplicative group for GF(q
n
). 

Consequently, there is a Singer cycle subgroup H = ΓL(1, 2
11

 ) in PSL(11, 2), since 11 

is a prime number which prove the point (6) of the main theorem (1.1). 

 

3.4 The maximal subgroups of C4:  

If H is a tensor product group, then H preserves a decomposition of V as a tensor product 

V1 V2, where dim(V1)  ≠ dim(V2) of spaces of dimensions k, m > 1 over GF(q), and so H 

stabilize the tensor product decomposition F
k  F

m
, where n = km, k ≠ m. Thus, H is a 

subgroup of the central product of GL(k, q) GL(m, q).  

Consequently, there is no tensor product group in PSL(11, 2), since 11 can not be 

analysis to two different numbers. 

 

3.5 The maximal subgroups of C5:  

If H is a subfield group, then H is the linear groups over subfields of GF(q) of prime index. 

Thus H can be embedded in GL(n, p
f
).Z where e/f is prime number and q = p

e
. 
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Consequently, there are no C5 groups in PSL(11, 2), since 2 is a prime number. 

 

3.6 The maximal subgroups of C6:  

For the dimension n = r 
m
, if r is prime number divides q-1, then H = r

2m 
: Sp(2m, r) is an 

extraspecial r-group of order r
2m+1

, or if r = 2 and 4 divides q-1, then H = 2
2m

 . O(2m, 2) 

normalizes a 2-group of symplectic type of order 2
2m+2

. 

Consequently, there are no C6 groups in PSL(11, 2), since n = 11 is not prime power. 

 

3.7 The maximal subgroups of C7:  

If H is a tensor-induced, then H preserves a decomposition of V as V1 V2 …  Vm 

where Vi are isomorphic and each Vi has dimension r  1, n = dim V = r
m
 , and the set of 

Vi  is permuted by H, so H stabilize the tensor product decomposition F
r  F

r … F
r
, 

where F = Fq. Thus H/Z ≤ PGL(r, q) : Sm.  

Consequently, there is a tensor-induced group in PSL(11, 2), since n = 11 is not prime 

power. 

 

3.8 The maximal subgroups of C8:  

If H normalizes a classical group in its natural representation, then H lies between a 

classical group and its normalizer in GL(n, q), so H preserves a classical form up to scalar 

multiplication. Thus H is a normalizer of such a subgroup PSL(n, q′ ), PSp(n, q′ ), P(n, q′) 

or PSU(n, q′ ) for various q′ dividing q.  

Consequently, there are no C8 groups in PSL(11, 2), since 2 is not a square, and is odd 

number. 

Finally, we will determine the maximal subgroups in class C9 of Aschbacher’s theorem 

{Result (2.7)}: 

 

4. The maximal subgroups of C9:  

If H is absolutely irreducible and H /(HZ)is almost simple, then H is the normalizer of 

absolutely irreducible normal subgroup M of H which is non-abelian and simple group. 

To find the maximal subgroups of C9, we will determine the maximal primitive 

subgroups H of G which have the property that a minimal normal subgroup M of H is non 

abelian group.  

The following corollary will play an important role in proving the main result of this 

section {theorem (4.2)} 

Corollary (4.1): If M is a non abelian simple group of a primitive subgroup H of G, 

then M is isomorphic to one of the following groups: 

a) PSL(2, 23). 

b) Mathieu groups, M23 or M24. 

Proof: let H be a primitive subgroup of G with a minimal normal subgroup M of  H is 

not abelian. So, we will discuss the possibilities of a minimal normal subgroup M of H 

according to: 

(I) M contains transvections. {(section (4.1)} 

(II) M does not contain any transvection. {(section (4.2)} 
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(III) M is doubly transitive. {(section (4.3)}. 

 

4.1 Primitive subgroups H of G which have the property that a minimal normal 

subgroup of H is not abelian is generated by transvections: 

To find the primitive subgroups H of G which have the property that a minimal normal 

subgroup of H is not abelian is generated by transvections, we will use the following result 

of Mclaughlin (25): 

 

Result (4.1.1) ( Mclaughlin Theorem ) (25): 

Let H be a proper irreducible subgroup of SL(n, 2) generated by transvections. Then n  

3 and H is Sp(n, 2), O(n, 2), Sn+1 or Sn+2. 

In the following, we will discuss the different possibilities of Result (4.1.1), which will 

give us the following main result of section (4.1): 

Corollary (4.1.2): There is no proper irreducible subgroup H of SL(11, 2) generated by 

transvections. 

Proof:  

From Mclaughlin Theorem {Result (4.1.1)}, M is isomorphic to one of the following 

groups: symplectic group, orthogonal groups O(11, 2), symmetric groups S12 or S13. 

1. There is no  symplectic groups since n is odd number.  

2. From the character table of the orthogonal group O(11, 2) by GAP: 

gap> g:=GO(11,2); 

GO(0,11,2) 

gap> c:=CharacterTable("g"); 

CharacterTable( "4.2^4.S5" ) 

gap> k:=CharacterTable(c, 2); 

BrauerTable( "4.2^4.S5", 2 ) 

gap> CharacterDegrees(k); 

[ [ 1, 1 ], [ 4, 2 ] ] 

And non of them of degree 11. Thus, if O(11, 2)  G, then it must be reducible. 

3. From the character table of S12, G contain no class of subgroups isomorphic to S12. 

[ [ 1, 1 ], [ 10, 1 ], [ 32, 1 ], [ 44, 1 ], [ 100, 1 ], [ 164, 1 ], [ 288, 1 ], [ 320, 1 ], [ 416, 1 ], 

[ 570, 1 ], [ 1046, 1 ], [ 1408, 1 ], [ 1792, 1 ], [ 2368, 1 ], [ 5632, 1 ] ] 

(gap>  CharacterDegrees(CharacterTable("S12")mod 2); ) 

And non of them of degree 11. Thus S12  G. 

4. From the character table of S13, G contain no class of subgroups isomorphic to S13. 

[ [ 1, 1 ], [ 12, 1 ], [ 64, 2 ], [ 208, 1 ], [ 288, 1 ], [ 364, 2 ], [ 560, 1 ], [ 570, 1 ], [ 1572, 

1 ], [ 1728, 1 ], [ 2208, 1 ], [ 2510, 1 ], [ 2848, 1 ], [ 3200, 1 ], [ 8008, 1 ], [ 8448, 1 ] ] 

 (gap> CharacterDegrees(CharacterTable("S13")mod 2); ) 

And non of them of degree 11. Thus S13  G. 

 

4.2 Primitive subgroups H of G which have the property that a minimal normal 

subgroup of H is not abelian and does not contain transvections: 

In this section, we will consider a minimal normal subgroup M of H is not abelian and does 

not contain any transvections. 

The following corollary is the main result of section (4.2): 
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Corollary (4.2.1):  
If Y be a non - abelian simple subgroup of G which does not contain any transvection. Then 

Y is isomorphic to PSL(2, 23). 

Proof: 

We will prove Corollary (4.2.1) by series of Lemmas (4.2.2) through Lemmas (4.2.8) 

and Result (4.2.3). 

Lemma (4.2.2):  
Let Y is a primitive subgroup of G such that Y does not contain any transvection. If S(2) be 

a 2-Sylow subgroup of Y, then S(2) contains no elementary abelian subgroup of order 8. 

Proof:  

A 2-Sylow subgroup of G can be represented by the set of all matrices of the form:  

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40

41 42 43 44 45

46 47 48 49

50 51 52

53 54

55

1

1

1

1

1

1

1

1

1

1

1

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x

x x x x x

x x x x

x x x

x x

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 


 





 

Where all entries are in F2. 

Let Y is a primitive subgroup of G such that Y does not contain any transvection. If 

S(2) be a 2-Sylow subgroup of Y, then inside S(2), there exist only two elementary abelian 

subgroups of the form:- 
1 2 3 4 5 6 7 8 9 101 x x x x x x x x x x

1 . . . . . . . . .

1 . . . . . . . .

1 . . . . . . .

1 . . . . . .

A =  1 . . . . .

1 . . . .

1 . . .

1 . .

1 .

1

  
  
  
  
  
  
  
   
  
  
  
  
  
  
  
  
    

        and       
1

2

3

4

5

6

7

8

9

10

1 . . . . . . . . . x

1 . . . . . . . . x

1 . . . . . . . x

1 . . . . . . x

1 . . . . . x

B = 1 . . . . x

1 . . . x

1 . . x

1 . x

1 x

1

  
  
  
  
  
  
  
   
  
  
  
  
  
  
  
  
    

   

where the orders of A and B are equal to 2
10

  

A corresponds to transvections:  

1

.

.

.

.
I+ . x x x x x x x x x  x

1 2 3 4 5 6 7 8 9 10.

.

.

.

.

 
 
 
 
 
 
 

  
  

 
 
 
 
 
   
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 And B corresponds to transvections :   

 

1

2

3

4

5

6

7

8

9

10

x

x

x

x

x

xI+ . . . . . . . . . 1

x

x

x

x

.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Since S(2) does not contain any transvections, then both A and B must be the identity 

element. Then S(2) contains no elementary abelian subgroup of order 8. 

 

Result (4.2.3): (1) 

Let Y be a simple group. Assume that the 2-Sylow subgroup of Y contains no elementary 

abelian subgroup of order 8. Then Y is isomorphic to one of the following groups: A7, 

PSL(2, q), PSL(3, q), PSU(3, q) with q odd or PSU(3, 4). 

We will proceed to determine which of these groups satisfy the conditions of Corollary 

(4.2.1). 

Lemma (4.2.4): A7  G 

Proof: 

Since the irreducible 2-modular characters for A7 by GAP are:  

[ [ 1, 1 ], [ 4, 2 ], [ 6, 1 ], [ 14, 1 ], [ 20, 1 ] ] 

 ( gap > CharacterDegrees ( CharacterTable ( "A7" ) mod 2 ) ); 

And non of them of degree 11. 

Lemma (4.2.5): If PSL(2, q)  G, q odd, then q = 23. 

Proof: 

PSL(2, q) has no projective representation in G of degree  (1/2)(q-1) {( 22 ) and ( 29 )} 

and (1/2)(q-1)  11 for all odd q  23.  Hence we need only to consider the cases when q  

23. 

a. PSL(2, 3) is not simple. 

b. PSL(2, 5)  PSL(2, 2
2
),  

The irreducible 2-modular characters for PSL(3, 5) by GAP are: 

[ [ 1, 1 ], [ 2, 2 ], [ 4, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( " L2(5) " ) mod 2 ) ); 

But non of them of degree 11. Therefore if PSL(2, 5)  G, then it is reducible. 

c. PSL(2, 7)  PSL(3, 2),  

The irreducible 2-modular characters for PSL(2,7) by GAP are: 

[ [ 1, 1 ], [ 3, 2 ], [ 8, 1 ] ],  

( gap > CharacterDegrees ( CharacterTable ( " L2(7) " ) mod 2 ) );  

But non of them of degree 11. Therefore if PSL(2, 7)  G, then it is reducible. 

d. For PSL(2, 3
2
)  A6:  

The irreducible 2-modular characters for PSL(2, 3
2
) by GAP are:  

[ [ 1, 1 ], [ 4, 2 ], [ 8, 2 ] ].  

( gap > CharacterDegrees ( CharacterTable ( " L2(9) " ) mod 2 ) ); 
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But non of them of degree 11. Therefore if PSL(2, 3
2
)  G, then it is reducible. 

e. For PSL(2, 11): 

The irreducible 2-modular characters for PSL(2, 11) by GAP are:  

[ [ 1, 1 ], [ 5, 2 ], [ 10, 1 ], [ 12, 2 ] ].  

( gap > CharacterDegrees ( CharacterTable ( "L2(11) " ) mod 2 ) ); 

But non of them of degree 11. Therefore if PSL(2, 11)  G, then it is reducible. 

f. For PSL(2, 13): 

The irreducible 2-modular characters for PSL(2, 13) by GAP are:  

[ [ 1, 1 ], [ 6, 2 ], [ 12, 3 ], [ 14, 1 ] ]. 

( gap > CharacterDegrees ( CharacterTable ( " L2(13) " ) mod 2 ) ); 

But non of them of degree 11. Therefore if PSL(2, 13)  G, then it is reducible. 

g. For PSL(2, 17):  

The irreducible 2-modular characters for PSL(2, 13) by GAP are:  

[ [ 1, 1 ], [ 8, 2 ], [ 16, 4 ] ], 

( gap > CharacterDegrees ( CharacterTable ( " L2(17) " ) mod 2 ) ); 

But non of them of degree 11. Therefore if PSL(2, 17)  G, then it is reducible. 

h. For PSL(2, 19): 

The irreducible 2-modular characters for PSL(2, 19) by GAP are:  

[ [ 1, 1 ], [ 9, 2 ], [ 18, 2 ], [ 20, 4 ] ], 

( gap > CharacterDegrees ( CharacterTable ( " L2(19) " ) mod 2 )   ); 

But non of them of degree 11. Therefore if PSL(2, 19)  G, then it is reducible. 

i. For PSL(2, 23): 

The irreducible 2-modular characters for PSL(2, 23) by GAP are:  

[ [ 1, 1 ], [ 11, 2 ], [ 22, 1 ], [ 24, 5 ] ]  

gap> CharacterDegrees(CharacterTable("PSL(2,23)")mod 2); 

Hence, there are two classes of degree 11. Therefore PSL(2, 23)  G 

Lemma (4.2.6): PSL(3, q)  G, for all q. 

Proof: 

PSL(3, q) has no projective representation in G of degree q
n-1

-1 = q
2
-1 {( 22 ) and ( 29 

)}, and it is clear that q
2
-1  11 for all q  4. Thus, we need to test PSL(3, 2) and PSL(3, 3) 

as primitive subgroups of G ? 

 PSL(3, 2)  G, [see lemma (4.2.5)] 

 PSL(3, 3)  G, since the irreducible 2-modular characters for PSL(3, 3) by GAP 

are: 

[ 1, 1 ], [ 12, 1 ], [ 16, 4 ], [ 26, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( " PSL(3, 3) " ) mod 2 ) ); 

Hence, non of these is of degree 11, therefore if PSL(3, 3)  G, then it is reducible. 

 

Lemma (4.2.7): PSU(3, q)  G, for all q. 

Proof:  

PSU(3, q) has no projective representation in G of degree  q( q-1 ), ( 29 ), and it is 

clear that     q( q-1 )  11 for all q  4. Thus, we need to test PSU(3, 2) and PSU(3, 3) are 

primitive subgroups of G ? 

 PSU(3, 2) is not simple. 
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 PSU(3, 3)  G, since the irreducible 2-modular characters for PSU(2, 9) by GAP 

are:                     [ [ 1, 1 ], [ 6, 1 ], [ 14, 1 ], [ 32, 2 ] ] 

( gap> CharacterDegrees(CharacterTable("U3(3)")mod 2) ).  

and non of these of degree 11. 

Lemma (4.2.8): PSU(3, 4)  G. 

Proof:  

PSU(3, 4) does not satisfy the conditions of this section, since PSU(3, 4) is not simple. 

 

4.3 Primitive subgroups H of G which have the property that a minimal normal 

subgroup of H which is not abelian is doubly transitive group: 

In this section, we will consider a minimal normal subgroup M of H is not abelian and is 

doubly transitive group: 

The following Corollary is the main result of this section: 

Corollary (4.3.1): If M is a non abelian simple group of  doubly transitive group H, then M 

is isomorphic to one of the following groups: 

a) PSL(2, 23). 

b) Mathieu groups, M23 or M24. 

Proof: 

Since every doubly transitive group is a primitive group ( 3 ), then we will use the 

classification of doubly transitive groups { ( 13 ) and ( 26 ) }. And we will prove Corollary 

(4.3.1) by series of Lemmas (4.3.3) through Lemmas (4.3.15) and Result (4.3.2). 

Result (4.3.2): { ( 13 ) and ( 26 )}. 

If Y be a doubly transitive group, then Y has a simple normal subgroup M
*
, and M

* 
 

Y Aut(M
*
), where M

*
 as follows: 

1. An, n  5; 

2. PSL(d, q), d  2, where (d, q)  (2, 2), (2, 3); 

3. PSU(3, q), q  2; 

4. the Suzuki group Sz(q), q = 2
2m+1

 and m  0; 

5. the Ree group Re(q), q = 3
2m+1

 and m  0; 

6. Sp(2n, 2), n  3; 

7. PSL(2, 11); 

8. Mathieu groups Mn, n = 11, 12, 22, 23, 24. 

9. HS (Higman-Sims group); 

10. CO3 (Conway’s smallest group). 

 

In the following, we will discuss the different possibilities of Result (4.3.2); 

Lemma (4.3.3): An  G, for all n  5. 

Proof: 

From ( 30 ) , An for all n  8, has a unique faithful 2-modular representation of  least 

degree, this degree being (n-1) if n is odd and (n-2) if n is even, so, the 2-modular 

representation of  least degree is greater than 11 for all n ≥ 14.   Thus An  G for any n ≥ 

14. 

A5  G: since the irreducible 2-modular characters for A5 by GAP are:  

[ [ 1, 1 ], [ 2, 2 ], [ 4, 1 ] ] 

 ( gap > CharacterDegrees ( CharacterTable ( "A5" ) mod 2 ) ); 
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A6 G: since the irreducible 2-modular characters for A6 by GAP are:  

[ [ 1, 1 ], [ 4, 2 ], [ 8, 2 ] ] 

 ( gap > CharacterDegrees ( CharacterTable ( "A6" ) mod 2 ) ); 

A7 G: since the irreducible 2-modular characters for A7 by GAP are:  

[ [ 1, 1 ], [ 4, 2 ], [ 6, 1 ], [ 14, 1 ], [ 20, 1 ] ] 

 ( gap > CharacterDegrees ( CharacterTable ( "A7" ) mod 2 ) ); 

A8  G: since the irreducible 2-modular characters for A8 by GAP are:  

[ [ 1, 1 ], [ 4, 2 ], [ 6, 1 ], [ 14, 1 ], [ 20, 2 ], [ 64, 1 ] ] 

( gap > CharacterDegrees ( CharacterTable ( "A8" ) mod 2 ) ); 

A9  G: since the irreducible 2-modular characters for A9 by GAP are:  

[ [ 1, 1 ], [ 8, 3 ], [ 20, 2 ], [ 26, 1 ], [ 48, 1 ], [ 78, 1 ], [ 160, 1 ] ] 

( gap > CharacterDegrees ( CharacterTable ( "A9" ) mod 2 ) ); 

A10  G: since the irreducible 2-modular characters for A10 by GAP are: 

[ [ 1, 1 ], [ 8, 1 ], [ 16, 1 ], [ 26, 1 ], [ 48, 1 ], [ 64, 2 ], [ 160, 1 ],  [ 198, 1 ], [ 200, 1 ], [ 

384, 2 ] ] 

( gap > CharacterDegrees ( CharacterTable ( "A10" ) mod 2 ) ). 

A11G: since the irreducible 2-modular characters for A11 by GAP are:  

[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ], [ 100, 1 ], [ 144, 1 ],  [164, 1 ], [ 186, 1 ], [ 198, 1 ], 

[ 416, 1 ], [ 584, 2 ], [ 848, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( "A11" ) mod 2) ); 

A12  G:  since the irreducible 2-modular characters for A12 by GAP are:  

[ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ], [ 100, 1 ], [ 144, 2 ],  [ 164, 1 ], [ 320, 1 ], [ 416, 1 ], 

[ 570, 1 ], [ 1046, 1 ], [ 1184, 2 ],  [ 1408, 1 ], [ 1792, 1 ], [5632,1]. 

( gap > CharacterDegrees ( CharacterTable ( "A12" ) mod 2 ) ); 

A13  G:  since the irreducible 2-modular characters for A12 by GAP are:  

[ [ 1, 1 ], [ 12, 1 ], [ 32, 2 ], [ 64, 1 ], [ 144, 2 ], [ 208, 1 ],  [ 364, 2 ], [ 560, 1 ], [ 570, 1 

], [ 1572, 1 ], [ 1728, 1 ], [ 2208, 1 ],  [ 2510, 1 ], [ 2848, 1 ], [ 3200, 1 ], [ 4224, 2 ], [ 8008, 

1 ] ]  

( gap > CharacterDegrees ( CharacterTable ( "A13" ) mod 2 ) ); 

Lemma (4.3.4):  If PSL(2, q)  G, then q = 23 

Proof: 

We have two cases: 

Case (1). q is even: 

PSL(2, q) has no projective representation in G of degree  (1/d)(q-1), d = g.c.d(2, q-1)   

{( 22 ) and ( 29 )}, and ( q-1 )  11 for all even q  16. Also,  

 PSL(2, 2) not simple. 

 PSL(2, 4)  G, since the irreducible 2-modular characters for PSL(2, 4) by GAP 

are: 

[ [ 1, 1 ], [ 2, 2 ], [ 4, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( " L2(4) " ) mod 2 ) );  

and non of these of degree 11. 

 PSL(2, 8)  G, since the irreducible 2-modular characters for PSL(2, 8) by GAP 

are: 

[ [ 1, 1 ], [ 2, 3 ], [ 4, 3 ] , [8, 1]], 
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( gap > CharacterDegrees ( CharacterTable ( " L2(4) " ) mod 2 ) );  

and non of these of degree 11. 

Thus, PSL(2, q)  G for all q is even. 

Case (2). q is odd: 

If PSL(2, q)  G, q is odd, then q = 23. [ see Lemma (4.2.5)] 

Lemma (4.3.5): PSL(n, 2)  G for all n. 

Proof: 

PSL(n, 2) has no projective representation in G of degree  q
n-1

-1 = 2
n-1

-1 { ( 22  ) and ( 

29 )}, and it is clear that 2
n-1

-1  11 for all n  4. Thus, we need to test PSL(2, 2), PSL(3, 2) 

and    PSL(4, 2) are primitive subgroups of G ? 

 PSL(2, 2) is not simple. 

 PSL(3, 2)  G. Since PSL(3, 2)  PSL(2, 7), and PSL(2, 7)   G.  [see 

Lemma(4.2.5)] 

 PSL(4, 2)  G. Since PSL(4, 2)  A8, and A8  G [see Lemma(4.2.5)] 

Lemma (4.3.6):  If PSL(n, q)  G, then n = 2 and q = 23 

Proof: 

PSL(n, q) has no projective representation in G of degree  (q
n-1

-1) {( 22 ) and ( 29 ) }, 

which   11 for all for all q  3 and n  4. Thus, we need to test PSL(2, q), PSL(3, q) and 

PSL(n, 2) as primitive subgroups of G ? 

 If PSL(2, q)  G, then q = 23 [see lemma (4.3.4)]. 

 PSL(3, q)  G for all q [ see Lemma (4.2.6)]. 

 PSL(n, 2)  G for all n [ see Lemma (4.3.5)]. 

Lemma (4.3.7):  PSU(2, q)  G, for all q. 

Proof:  

PSU(2, q)  PGL(2, q). But PGL(2, q) has no projective representation in G of degree  

( q-1 ), provided    q ≠ 9 ( 29 ), which  11 for all q  13. 

Thus, we need to test PSU(2, 2) , PSU(2, 3), PSU(2, 4), PSU(2, 5), PSU(2, 7), PSU(2, 

9), PSU(2, 11)  and PSU(2, 13) are primitive subgroups of G ? 

 PSU(2, 2) is not simple. 

 PSU(2, 3) is not simple. 

 PSU(2, 4)  G, since the irreducible 2-modular characters for PSU(2, 4) by GAP 

are:                     [ [ 1, 1 ], [ 2, 2 ], [ 4, 1 ] ] 

( gap> CharacterDegrees(CharacterTable("U2(4)")mod 2) ) 

and there is non of degree 11. 

 PSU(2, 5)  G, since the irreducible 2-modular characters for PSU(2, 5) by GAP 

are:                     [ [ 1, 1 ], [ 2, 2 ], [ 4, 1 ] ] 

( gap>  CharacterDegrees(CharacterTable("U2(5)")mod 2) ). 

and there is non of degree 11. 

 PSU(2, 7)  G, since the irreducible 2-modular characters for PSU(2, 7) by GAP 

are:                      [ [ 1, 1 ], [ 3, 2 ], [ 8, 1 ] ] 

(gap> CharacterDegrees(CharacterTable("U2(7)")mod 2) ). 

and there is non of degree 11. 
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 PSU(2, 9)  G, since the irreducible 2-modular characters for PSU(2, 9) by GAP 

are:                     [ [ 1, 1 ], [ 4, 2 ], [ 8, 2 ] ] 

( gap> CharacterDegrees(CharacterTable("U2(9)")mod 2) ).  

and there is non of degree 11. 

 PSU(2, 11)  G, since the irreducible 2-modular characters for PSU(2, 11) by 

GAP are:                 [ [ 1, 1 ], [ 5, 2 ], [ 10, 1 ], [ 12, 2 ] ] 

( gap> CharacterDegrees(CharacterTable("U2(11)")mod 2) ).  

and there is non of degree 11. 

 PSU(2, 13)  G, since the irreducible 2-modular characters for PSU(2, 13) by 

GAP are:                 [ [ 1, 1 ], [ 6, 2 ], [ 12, 3 ], [ 14, 1 ] ] 

( gap> CharacterDegrees(CharacterTable("U2(13)")mod 2) ).  

and there is non of degree 11. 

Lemma (4.3.8): PSU(n, 2)  G, for all n. 

Proof: 

PSU(n, q), n  3, has no projective representation in G of degree  q(q
n-1

-1)/(q+1) if n 

is odd, and     PSU(n, q) , n 3, has no projective representation in G of degree  (q
n
-

1)/(q+1) if n is even. { ( 22) and      ( 29 )}, Thus the minimal projective degree for PSU(n, 

2) is  11 for all n  6. 

Thus, we need to test PSU(2, 2) , PSU(3, 2), PSU(4, 2) and PSU(5, 2)  are primitive 

subgroups of G ? 

 PSU(2, 2
2
) is not simple. 

 PSU(3, 2
2
) is not simple. 

 PSU(4, 2)  G. Since the irreducible 2-modular characters for PSU(4, 2) by GAP 

are:                    [ [ 1, 1 ], [ 4, 2 ], [ 6, 1 ], [ 14, 1 ], [ 20, 2 ], [ 64, 1 ] ] 

( gap> CharacterDegrees(CharacterTable("U4(2)") mod 2) ).  

and non of these of degree 11. 

 PSU(5, 2)  G, since the irreducible 2-modular characters for PSU(5, 2) by GAP 

are:                     [ [ 1, 1 ], [ 5, 2 ], [ 10, 2 ], [ 24, 1 ], [ 40, 4 ], [ 74, 1 ], [ 160, 2 ], [ 280, 2 ], 

[ 1024, 1 ] ] 

(gap> CharacterDegrees(CharacterTable("U5(2)") mod 2) ). 

Lemma (4.3.9): PSU(n, q)  G. 

Proof: 

PSU(n, q), n  3, has no projective representation in G of degree  q(q
n-1

-1)/(q+1) if n 

is odd, and     PSU(n, q) , n 3, has no projective representation in G of degree  (q
n
-

1)/(q+1) if n is even. { ( 22 ) and     ( 29 )}, Thus the minimal projective degree is  11 for 

all n  3 and q  3. 

Thus, we need to test PSU(n, 2), PSU(2, q) and  PSU(3, q)  are primitive subgroups of 

G ? 

 PSU(n, 2)  G, [see Lemma (4.3.8) ]. 

 PSU(2, q)  G, [see Lemma (4.3.7) ]. 

 PSU(3, q)  G, [see lemma (4.2.7)]. 

Lemma(4.3.10): Sz(q)  G, q = 2
2m+1

 and m  0. 
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Poof:  

The irreducible 2-modular characters for Suzuki groups by GAP are: 

[ [ 1, 1 ], [ 4, 3 ], [ 16, 3 ], [ 64, 1 ] ] 

( gap > CharacterDegrees ( CharacterTable ( " Sz(8) " ) mod 2 ) ); 

and non of these of degree 11, thus Sz(q)  G.  

Lemma (4.3.11): Re(q)  G, q = 3
2m+1

. 

Proof: 

The irreducible 2-modular characters for Ree group Re(q) by GAP are:                                                          

[ [ 1, 1 ], [ 702, 1 ], [ 741, 2 ], [ 2184, 2 ], [ 13832, 6 ], [ 16796, 1 ], [ 18278, 1 ], [ 19684, 6 

], [ 26936, 3 ] ] 

( gap>  CharacterDegrees ( CharacterTable ( " R(27) " ) mod 2 ) ); 

and non of these of degree 11, thus Re(q)  G.  

Lemma (4.3.12): PSp( 2n, 2)  G for all n 3. 

 Proof:  

From {( 22 ) and ( 29 )}, PSp(2n, q), n  2 has no projective representation in G of 

degree  (1/2)q
n-1

( q
n-1

 – 1 )(q-1) if q is even. And since q = 2, then (1/2)q
n-1

( q
n-1

 – 1 )(q-1) 

 11 for all        n  4. Thus, we need to test PSp(6, 2) is a primitive subgroups of G ? 

The irreducible 2-modular characters for PSp(6, 2) by GAP are:   [ 1, 1 ], [ 6, 1 ], [ 8, 1 

], [ 14, 1 ], [ 48, 1 ], [ 64, 1 ], [ 112, 1 ], [ 512, 1 ] ] 

(gap>  CharacterDegrees(CharacterTable(“S6(2)”)mod 2); 

and non of these of degree 11, thus PSp( 6, 2)  G 

Lemma (4.3.13): if  the Mathieu groups Mn, n = 11, 12, 22, 23, 24 are primitive subgroups 

of G, then n = 23 or 24. 

Proof: 

 M11  G, since the irreducible 2-modular characters for Mathieu group M11 by 

GAP are: 

[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( “ M11 “ ) mod 2 ) ); 

 M12  G, since the irreducible 2-modular characters for Mathieu group M12 by 

GAP are: 

[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ], [ 144, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( “ M12 “ ) mod 2 ) ); 

 M22  G, since the irreducible 2-modular characters for Mathieu group M22 by 

GAP are: 

[ [ 1, 1 ], [ 10, 2 ], [ 34, 1 ], [ 70, 2 ], [ 98, 1 ] ], 

( gap > CharacterDegrees ( CharacterTable ( “ M22 “ ) mod 2 ) ). 

 M23  G, since the irreducible 2-modular characters for Mathieu group M23 by 

GAP are: 

[ [ 1, 1 ], [ 11, 2 ], [ 44, 2 ], [ 120, 1 ], [ 220, 2 ], [ 252, 1 ],  [ 896, 2 ] ] 

gap> CharacterDegrees(CharacterTable(“M23”)mod 2); 

 M24  G, since the irreducible 2-modular characters for Mathieu group M24 by 

GAP are: 

[ [ 1, 1 ], [ 11, 2 ], [ 44, 2 ], [ 120, 1 ], [ 220, 2 ], [ 252, 1 ], [ 320, 2 ], [ 1242, 1 ], [ 1792, 



TUJNAS, 2010 A(2) 69-86 

 
 

 

 

77 

1 ] ]. 

Gap> CharacterDegrees(CharacterTable(“M24”)mod 2); 

Which prove the point (b) of Corollary (4.3.1). 

Lemma (4.3.14): HS (Higman-Sims group)  G; 

Proof: 

The minimal degrees of faithful representations of the Higman-Sims group over F2  is 

20, which is greater than 11, ( Jansen, 2005 ). 

Lemma (4.3.15): CO3 (Conway’s smallest group)  G; 

Proof: 

The minimal degrees of faithful representations of the CO3 over F2  is 22, which is 

greater than 11 (Jansen, 2005). 

Now, we will determine the maximal primitive group of C9 : 

Theorem (4.2): If H is a maximal primitive subgroup of G which has the property that a 

minimal normal subgroup M of H is not abelian group, then H is isomorphic to one of the 

following subgroups of G: 

(1) PΓL (2, 23). 

(2) Mathieu group M24. 

Proof: 

We will prove this theorem by finding the normalizers of the groups of corollary (4.1) 

and determine which of them are maximal:  

 The normalizer of PSL(2, 23) is PΓL(2, 23) { ( 16 ) , ( 17 ), ( 33 ) and ( 34 )}. Thus 

PΓL(2, 23) is a maximal primitive subgroup of G.  

 The normalizer of the Mathieu group M23 is the group M23 and the normalizer of 

the Mathieu group M24 is the group M24, but M23 is a subgroup of M24  {(  33 ) and ( 34 )}. 

Thus M24 is a maximal primitive subgroup of G.  

 

Which prove the points (7) and (8) of theorem (1.1), and this complete the proof of 

theorem (1.1). 
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 سًحي ابشاىين الخطيب
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 ملخص
( 2ًرلك باستخذام نظشيو أشبكا ) PSL(11, 2)فى ىزا البحث أًجذنا جويع الزهش الجزئيو العظوى للزهشه الخطية 

 (.7.7حصلنا علييا فى نظشية ) لتعين الزهش الجزئيو العظوى للزهش الخطية ًدًنث النتيجو التى

 

 

 

 


