Thamar University Journal of Natural & Applied SciencesISSN: 2073-07642010 A(3) 49-54© 2010 Thamar University

Synthesis and Characterization of Some New Heterocyclic Selenium Derivatives of 3,5-Naphtho– 1-Seleoncyclohexane

Hanan A. Al-Hazam^{*}, Usama S. Al-Timari, Naeem T. Faili and Hana'a Kadhum

Department of Chemistry, College of Science, University of Basra, Iraq.

ABSTRACT

A new series of heterocyclic derivatives from 3,5–naphtho-1-selenocyclohexane have been prepared (C_{12} H₁₀ SeX; X=CL Br, I) and C_{12} H₁₀ SeRX; R=CH3; X=I)

The new compounds were characterized by elemental analysis, IR, $H^{1}NMR$ and molar conductance. Conductivity measurements of these compounds in DMSO solution indicated that they behave as week electrolytes

INTRODUCTION

The preparation, characterization and solution properties of heterocyclic tellurium and selenium had been described previously [1-9].

3,5-naphtho–1-tellurocyclohexane was studied firstly by Anderson et. al. [10] who studied the cyclic inversion that occurs in oxygen, sulphur, tellurium and selenium cyclic compounds.

Singh et. al. [11] have prepared 3,5- naphtho–1-tellurocyclohexane and 3, 5- naphtho–1-selenocyclohexane from 1,8-bis (bromo methyl) naphthalene.

Radhy [12] prepared charge transfer complexes from quinines. In the present work a new heterocyclic selenium compounds based on 3,5- naphtho–1-selenocycolhexane have been prepared and characterized by physical properties and spectroscopic methods.

EXPERIMENTAL

A) Physical measurements

All physical measurements were achieved in the University of Basrah. Infrared spectra were recorded as KBr pellets in a range of 4000-400 cm⁻¹ on a Pye-Uniecam SP300s infrared spectrophotometer. Elemental analysis were preformed using EA-1108 Carlo-Erba elemental analyzer. H¹ NMR spectra were recorded in CDCl₃ or DMSO-d6 solution containing TMS as internal standard using Joel EX-90 instrument 100MHz. Melting points were determined by Gallenkamp apparatus and were uncorrected. Conductivity measurements were done with a WTW conductivity meter LBR using a standard conductivity cell with a constant of 0.8 cm^{-1} .

B) Synthesis

1, 8- bis(bromo methyl)naphthalene C₁₂H₁₂Br₂ (I)

A mixture of (2 g, 50 mmol) of 1,8-dimethylnaphthalene and (6.4 gm, 25mmol) Nbromosuccinimide (NBS) with (0.25g ,1mmol) from benzoyl chloride in 40 ml CCl₄ was heated to reflux for 5 hrs. A small quantity of pale yellow crystal was deposited from this reaction on cooling. The precipitate was washed with a small amount of water and recrystallized from benzene (m.p. 165°C).

3,5- naphtha-1-selenocyclohexane C₁₂H₁₀Se (II) [11]

To a well-stirred suspension of selenium (0.12 g) (1.59 mmol) in water, sodium borohydride (0.12 gm, 1.59 mmol) was added in water (25ml) at room temperature .The selenium was consumed with in 10 min. 1,8-bis (bromomethyl) naphthalene (0.59mmol) in toluene (25ml) was there added through a dropping funnel. After addition of a phase– transfer catalyst, tetrabutylammoniumhydrogensulphate (0.1 g) the temperature was raised to 60 °C and kept at 60°C for 8 hrs. The organic layer was separated, washed with 5% aqueous sodium carbonate, then evaporated in vacuo to give an orange product. Recrystallization from petroleum ether (40–60°C) yielded orange crystals mp. 82°C (lit. [9]). 83.5–84.5°C.

1, 1–Dibromo- 3,5–naphtha-1-selenocyclohexane C₁₂H₁₀Se Br₂ (III).

A solution of 3,5–naphtha-1-selenocyclohexane (3 mmol) in dry ether was treated dropwise with a solution of bromine (3 mmol) in ether. A white precipitate was formed immediately. The solution was evaporated and the residue was recrystallized from methanol to give white crystals (m.p. $202-204^{\circ}C$)

1,1-Dichloro-3,5-naphtha-1-selenocyclohexane (IV).

In ether was added slowly to a stirred solution of (3 mmol) of 3,5-naphtho-1selenocyclohexane in the same solvent at room temperature. A white precipitate was formed immediately. The precipitate was washed with water and recrystallized from ethanol to give a white crystal (m.p. $200-201^{\circ}C$)

1,1-diodo-3,5-naphtholselenocyclohexane C₁₂H₁₀SeI₂(V).

A solution of 3,5-naphto-1-selenocyclohexane (1 mmol) in dry ether (10 ml) was treated drop wise with a solution of iodine (0.39 g,1.5 mmol) in ether. A white precipitate was formed. The solution was evaporated and the residue was recrystallized from ethanol to give white crystals (m.p. 188-200 $^{\circ}$ C).

Iodo-1-methyl-3,5-naphho-1-selenocyclohexane C₁₃H₁₃SeI (VI).

(3 mmol) of freshly distilled iodomethane was introduced with cyclic selenide (3 mmol). Recrystallization from ethanol/water (3/1) gave white crystals of m.p. 170-173°°C.

RESULT AND DISCUSSION

This paper deals with the synthesis of 3,5-naphtho-1-selenocyclo hexane (II) which was then converted to dihalo derivatives through the reaction with halogen in 70% yield. Its treatment with methyl iodide gave compound $C_{12}H_{10}SeCH_{3}I$ (VI).

The synthesized compounds and their synthesis modes are shown in Scheme (1).

All compounds are soluble in DMSO, their physical properties and elemental analysis are listed in Table (1).

The infrared spectra (KBr disk) of all compounds show a week to moderate band near $585-600 \text{ cm}^{-1}$ which characteristic of the C-Se stretching [7].

Two strong absorption bands: the first was at 770- 780 cm^{-1} owing to bending stretching of C-H; and the second was at 1620-1590 cm⁻¹ owing to aromatic stretching C=C Table(2).

In addition to these absorption bands, there is a number of characterization absorption such Se-Br, Se-Cl and Se-I stretching at 620, 610 and 605 cm⁻¹, respectively.

No	Chemical formula	Colour	M.P. °C	Yield %	Anal. Found (cal.) %	
INO.					С	Н
Π	$C_{12}H_{10}Se$	Orange	82	70	61.20	4.34
					(61.81)	(4.32)
III	$C_{12}H_{10}SeBr_2$	White	202 - 204	75	36.10	2.51
					(36.67)	(2.56)
IV	$C_{12}H_{10}SeCl_2$	White	200 - 201	70	47.47	2.29
					(47.41)	(3.31)
V	$C_{12}H_{10}SeI_2$	White	188 - 200	70	29.58	2.40
					(29.59)	(2.06)
VI	$C_{12}H_{10}SeCH_3I$	White	170 - 173	75	41.60	3.42
					(41.62)	(3.49)

Table (1): Analytical and physical properties for compounds (II- VI).

¹H NMR spectra of compounds (11-V1) were measured in CDCl₃ and DMSO-d₆. Compounds $C_{12}H_{10}SeX_2$ in CDCl₃ solvent gave two types of bands the first, singlet signal related to methylene protons (2,6) and the second multiple signal at 7-8.2 ppm for aromatic protons. Table (2),

¹H NMR of $C_{12}H_{10}$ SeCHI (V1) shows a quartet signal for methylene proton (2,6) at 5.23 ppm which are not equivalent as compared with $C_{12}H_{10}$ Se and $C_{12}H_{10}$ SeX₂ compounds. This result is in agreement with $C_{12}H_{10}$ TeRX [13] and $C_{12}H_{10}$ SeRX [14].

No.	Se–C cm ⁻¹	$C=C cm^{-1}$	C-H _{ben} cm ⁻¹	δ (ppm)	Solvent	
П	585	1580	780	4.30 s (H _{2,6})	DMSO-d ₆	
				7.70–8.00 (H _{aromatic})	2.15	
III	585	1590	775	4.60 s (H _{2,6})		
				$7.20-8.10m(H_{aromatic})$	CD CI3	
IV	500	1580	770	4.80 s (H _{2,6})	CDCI	
1 V	570	1500	770	$7.20-8.20m(H_{aromatic})$	CDCI ₃	
v	500	1620	770	4.50{S, H(2,6)}	CDCI	
v	590	1620	770	7.20-8.00m (H _{aromatic})	CDCI ₃	
				1.20 {S, CH ₃ }		
VI	600	1608	780	5.23 {M, H(2,6)}	DMSO-d ₆	
				7.20-8.20m (H _{aromatic})		

Table (2): IR and ¹HNMR for (II–VI) compounds.

Figure (1): Molar conductivity versus square root of concentration.

The molar conductivity for these compounds in DMSO as solvent with concentration between $10^{-4}-10^{-5}$ molar were measured. The plots of molar conductance (ohm⁻¹ cm⁻¹ mole) against square root of concentration for compounds showed a typical behavior of week electrolyte in DMSO solvent (Fig.1) and this result is in agreement with previous studies [12-15].

REFERENCES

- [1] Amar A. J., (2002), Abhath-Al-Yarmok, 11: 665.
- [2] Amar A. J. and Kamel I. A., (2001), National J. Chem. 4:572.
- [3] Al-Rubaie A. Z., Grauger H. P. and Chapelle S. (1985), J. Organomet. Chem. 287: 321
- [4] Al-Rubaie A. Z., Al-Shirayda H. and Auoop A. I., (1988), J. Organomet. Chem 356: 49
- [5] Sindelar K., Metysova J., Svatek E. and Proiva M., (1969), Collect. Czech. Chem. Commun, 34:2122.
- [6] Al-Rubaie A. Z., Al-Najar A. and Jasim A., (1990), Inorg. Chem. Acta. 175:9181.
- [7] Jamell A. M., Sc. Thesis.(1998) University of Basra Iraq.
- [8] Trace W. and Mrick D. E. J., (1958), Amer . Chem. Soc. 78: 6130 .
- [9] Radhy H. A., (1997), Basra. J. Science, C, 15: 55.
- [10] Anderson J. E., Orgensen F. S. T. and Thomsen, (1982), J. Chem. Soc. Chem. Commun, 333:222.
- [11] Singh H. B., Kaqnna P.K and Kamer S. K., (1988), J.Orgomet. Chem., 338.
- [12] Radhy H. A. J., (2004), Basrah Reaserch, 2:112.
- [13] Radhy H. A, M. Sc., Thesis (1993), Basra, Iraq.
- [14] Al-Rubaie A. Z. and Al-Masoudi E., (1990), J. Polyhydron, 9: 47.
- [15] Hassan A. F., (2002), Basra J. Science, 19: 2.

تحضير وتشخيص بعض مشتقات السلينيوم غير المتجانسة الجديدة ل- 3,5-Naphtho–1-Seleoncyclohexane

حنان الحزام ، أسامة التماري ، نعيم فيلى و هناء كاظم

قسم الكيمياء ، كلية العلوم ، جامعة البصرة، العراق

ملخص

في هذه الدراسة تم تحضير سلسلة جديدة من مشتقات المركب 3, 5-naphtho -1- selenocyclohexane و هي $C_{12}H_{10}$ SeRX; R=CH3; X=I و C_{12} H₁₀SeX; X=CL Br, I . وقد شخصت هذه المركبات باستخدام التحليل العنصري الدقيق (CHN) و اطياف الأشعة تحت الحمراء (IR) و اطياف الرنين النووي المغناطيسي(H¹-NMR) . و اثبتت التوصيلية المولارية في مذيب ثنائي مثيل سلفوكسايد(DMSO) بان المركبات عبارة عن الكتروليتات ضعيفة.