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ABSTRACT 

 

This paper presents a method for optimizing unstructured triangular 

meshes using a floating-point genetic algorithm. A mesh generation 

algorithm based on a modified advancing front method and sets of 

heuristic rules are used to generate the initial non-smooth triangular 

meshes for complex shapes. The developed mesh is then smoothed 

using a floating-point genetic algorithm that is more flexible than the 

usual binary genetic algorithms, and can handle non-smooth regions 

containing several local extrema.  Three approaches are used in 

selecting the fitness function to be optimized in the genetic algorithm, 

namely, the triangle aspect ratio, the maximum angle at each node of 

the triangular mesh, and a weighted linear combination of both 

functions. The genetic algorithm has been tested and validated for a 

number of test cases covering a wide range of complex geometry 

applications. The results have shown a high degree of improvement in 

the quality of the smoothed meshes and an ability to handle non-

convex regions. 

Key Words: Genetic algorithms, mesh generation, unstructured 

meshes. 

 

1. INTRODUCTION 

The development of sufficiently smooth unstructured surface meshes (grids) 

plays an important role in the geometry processing of real world objects. In 

most application the term unstructured meshes refer to triangular and 

tetrahedral meshes in two and three dimension respectively. A primary 

application of unstructured meshes concerns the geometric modeling of 

complex real world objects, soft tissue modeling, and multi-resolution 

representation of complex shapes. Additionally unstructured meshes play a 

pivotal role in the numerical simulation of many physical problems in solid 

mechanics, geo-mechanics, and fluid dynamics. 

Mesh generation has a huge literature and there are excellent references 

on structured and unstructured mesh generation [1-5], most grid generation 

techniques currently in use can fit into one of the three basic methods; 

Delaunay [6], Quadtree [7-8], and Advancing front method [5]. 
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1.1 Grid optimization and smoothing 

It is rare that any grid generation algorithm will be able to define a grid that is optimal 

without some form of post-processing to improve the overall quality of the grid. Most 

smoothing procedures [9-13] involve some form of iterative process that repositions 

individual vertices to improve the local quality of triangular grids. 

The often used quality criteria for triangular grids are small aspect ratio and no angles 

very close to 0 or to 180. However, there is a variety of other optimization problems such as 

maximizing the minimum angle, minimizing the maximum angle, minimizing the 

maximum aspect ratio, minimizing the maximum circumradius and the radius of the 

containing circle of the incident triangles. Smoothing, averaging, and optimization-based 

methods are also used to improve the quality of triangular grids. Grid smoothing adjusts the 

locations of grid vertices in order to improve element shapes and overall grid quality. In 

grid smoothing, the topology of the grid remains invariant. 

Laplacian smoothing is the most commonly used smoothing technique. Laplacian[14-

16] smoothing is computationally inexpensive and fairly effective, but it does not guarantee 

improvement in grid quality. Similar to Laplacian smoothing, there are a variety of other 

averaging/smoothing techniques, which iteratively reposition nodes based on a weighted 

average of the geometric properties of the surrounding grid points (nodes). Canann [11] 

provides an overview of some of the common methods in use. 

Optimization-based smoothing techniques measure the quality of the surrounding 

elements to a node and attempt to optimize by computing then local gradient of the element 

quality with respect to the node location. The grid vertices are moved so as to minimize a 

given distortion metric. 

Some of the developments in this area include [11,12]. Parthasrathy [13]developed an 

optimization-based technique by solving a nonlinear, constrained, global optimization 

problem with the aspect ratio being the objective function to be minimized. Canann [11] 

presents optimization-based smoothing algorithm and recommends a combined 

Laplacian/optimization-based approach. An approach developed by Freitag [16] work to 

maximize the minimum angle in triangular grids by using an analogue of the steepest 

decent method for smooth functions. Amenta [9] presents theoretical results showing how 

some local triangle shape optimization be solved using generalized linear programming. 

Other efficient algorithms are presented and many distortion metrics are discussed and 

various optimization techniques are compared. Other optimization based methods include 

the works of [13] that is based on making use of posteriori error estimates, and [14] that 

is based on the use of distortion metrics. The selection of good distortion metrics is also 

discussed in [15]. 

Recently, methods based on artificial intelligence concept have been used in grid 

generation and optimization. In [17] Neural Networks concepts have been used in finite 

element grid generations. Holder [18] presents a binary genetic algorithm for smoothing 

grids used in finite element analysis. A distortion metric is used to quantify the goodness of 

quadrilateral grid elements and serves as the fitness function for the genetic algorithm. 

The objective of the paper is to: 

• Develop an unstructured two-dimensional grid generation algorithm capable of 

triangulating complex geometrical shapes. 

• Develop and apply a genetic algorithm for smoothing and optimization of triangular 

grids. 
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2. PROPOSED METHOD 

The present method consists of a mesh generation algorithm based on the advancing front 

method for the generation of the initial grid to be smoothed, and a genetic algorithm to 

smooth the generated triangular mesh. 

 

2.1 Grid Generation Algorithm 

The algorithm is based on the advancing front method and a number of heuristic rules to 

ensure proper triangulation of arbitrary and simply connected regions into quality triangles. 

Several tests have been included into the algorithm to handle overlapping, edge crossing, 

and degenerate edges that may occur during the grid generation process. An efficient 

algorithm is also developed to generate the grid connectivity information needed during the 

grid generation process. 

 

2. 2 Grid Smoothing 

The developed grids normally contain poorly shaped triangles that may affect the generated 

grid when used in any specific application. The developed smoothing process is affected in 

two steps; first a diagonal swapping algorithm is first implemented followed by a floating-

point genetic algorithm. 

2. 2.1 Genetic Algorithms 

The genetic algorithm starts from a set of chromosomes (assumed solutions) and evolves 

different but better sets of chromosomes (sets of solutions) over a sequence of iterations. In 

each generation (iteration) the fitness-measuring criterion (objective function) determines 

the suitability of each chromosome and, based on these values, some of them are selected 

for reproduction. The number of copies reproduced by an individual parent is expected to 

be directly proportional to its fitness value, thereby embodying the natural selection 

procedure, to some extent. The procedure thus selects more fit solutions; and less fit 

solutions are eliminated ,The structure of a simple genetic algorithm is shown in Figure 1. 

 
Begin 

t ← 0 

Initialize P(t) 

Evaluate P(t) 

While (not termination-condition ) DO 

Begin  

t ← t + 1 

select P(t) from P(t-1) 

Crossover 

Mutate 

Evaluate P(t) 

END 

Figure 1: Structure of a simple genetic algorithm. 

 

During iteration t, a genetic algorithm maintains a population of potential solutions 

(chromosomes, vectors) 

Ρ(t) = {x
t
p…,x

t
n}. 
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Each solution is evaluated to give some measure of its “fitness”, then, a new population 

(iteration t+1 ) is formed to establish new solutions. Crossover combines the feature of two 

parent chromosomes to form two similar offspring by swapping corresponding segments of 

the parents. Mutation arbitrary alters one or more genes of a selected chromosome, by a 

random change with a probability equal to the mutation rate. 

The present genetic algorithm uses proportional selection, elitist model, one point 

crossover and uniform mutation. A geometrical procedure that will produce an object 

function for optimization works in the following manner. 

2.2.2 Genetic Algorithm parameters 

• Population size 

Population size is one of the parameters affecting the algorithm's convergence. The larger, 

more diverse population takes longer to converge on a solution, but is more likely to find a 

solution because of its diverse gene pool. For every internal node in the grid, 50 generation 

of populations are generated and every population contains 100 chromosomes (nodes). 

Creating a population of chromosomes initializes the process. Each chromosome 

contains two floating random numbers, the first for x-coordinate and the second for y-

coordinate. 

Each member of every chromosome is generated using random number generator. 

• Evaluation function 

For every random node (chromosome) generated the summation of areas for all 

triangles around that node are computed and it must be equal the summation of areas A for 

all triangles around that initial node N (to be moved to optimum location).The fitness 

function for every node is described later. 

• Selection Process 

For the selection process (selection of a new population with respect to the probability 

distribution based on fitness values), a roulette wheel with slots sized according to fitness is 

used. 

A roulette wheel is constructed as follows: 

1. Calculate the fitness value fivalu(Ni) for each chromosome(node Ni) (i=1,2,…, 

Pop_Size). 

2. Find the total fitness of population ( i) _ 

1 Σ = = pop size 

i F fivalu N. 

3. Calculate the probability of a selection pi for each chromosome 

(node Ni) (i=1,2,…, Pop_Size): pi 

= fivalu(Ni) /F 

4. Calculate a cumulative probability qi for each chromosome 

(node Ni) (i=1,2,…, Pop_Size): 

qi=Σ
i
j=1 Pj 

5. Calculate a cumulative fitness 

6. Finally select survivors using cumulative fitness probability and based on elitist model : 

-Generate a random (float) number r between [0..1],for each chromosome i.e. Pop_Size 

times; each time( for every chromosome ) if r < q1 then select the first chromosome (N1); 

-Otherwise select the i-th chromosome Ni (2 ≤ i ≤ Pop_Size) such that qi-1 < r < qi. 

• Crossover Probability: 

Crossover probability usually ranges from 0.01 to 1.0. Crossover reflects the likelihood that 

future population of nodes will contain a mix of information from the previous generation 
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of nodes. A rate of 0.5 means that a child node will contain about 50% of its location from 

one parent node and the rest from the second parent node. A rate of 1.0 means that no 

crossover will occur, or only clones of the parents will be evaluated. A crossover 

probability of 0.8 is used in the current algorithm. 

• Mutation rate 

The mutation rate can vary from 0.0 to 1.0. The higher the mutation rate, the more likely 

future nodal chromosomes will contain some random values. Since mutation occurs after 

crossover, a mutation rate that is too high will prevent crossover from having much if any 

effect. A random uniform mutation with a probability of 0.15 is used in the present 

algorithm. 

• Evaluation (fitness) function 

Three approaches are used in selecting the function to be optimized in the genetic 

algorithm, namely, the least square error of the variation of angles, the average of the aspect 

ratio of triangles at each node of the triangular grid, and a linear combination of both 

approaches. In this method evaluation function is in a composite form, made up of the least 

square error of the angles and average of aspect ratio for the triangles. Numerical 

experimentation indicates that the third approach is the best criteria for the selection of the 

fitness function. 

The fitness function is computed at every selected node. In every iteration, the absolute 

value of the change of the fitness function F and its maximum value is computed. The 

process is repeated for every iteration until convergence is achieved. A fixed value of 0.01 

is set for the differences in the fitness function as criteria for convergence. 

 

3. RESULTS 

The optimization algorithm is implemented for complex geometrical shapes and the results 

are shown in Figures 2 through 9. The optimization algorithm selectively moves the nodes 

of the poorly shaped triangles based on the fitness function which results in a marked 

improvement in the grid quality. The results clearly show that the improvement in the 

triangles quality from the initial grid to the optimum. 

Figures 7 through 9 compares the variation of the fitness function before and after 

optimization for nodes of the poorly shaped triangles. α= 0.8 and β =0.2. for the case of the 

cartoon-type rooster shape The curves of figure 8 show that the optimization using the 

genetic algorithm has resulted in improved values of the fitness function. The fitness values 

for most nodes ranges from 0.5 to 0.85, after smoothing the fitness values improved to a 

range of 0.85 to 0.94. 

The analysis of the curves in figure 1-6 shows that the fitness values of the initial grid 

for most nodes are in range 0.5 to 0.85. But after optimization with diagonal swapping the 

range improved to a range of 0.88 to 0.97. The results shown in figures 7-9 show that 

smoothing using the genetic algorithm have made a marked enhancement of the triangles 

quality. 

The triangles quality have improved and the range of the quality of the most triangles is 

improved from (0.11 – 0.92) to (0.91 – 97). 
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Figure 2: Initial and smoothed grids of cartoon-type rooster shape. 

 

 

 
Figure 3: Enlarged region of initial and smoothed grids of cartoon-type rooster shape. 

 

 

 
Figure 4:  Initial and smoothed grids of an artificial heart model section 
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Figure 5:  Enlarged region of Initial and optimum grid of an artificial heart section 

 
 

 
Figure 6: Enlarged region of Initial and optimum grid of an airfoil with a spoiler 

 

 

 

Figure 7: Curves of initial and optimum fitness function for cartoon-type rooster shape. 
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Figure 8: Curves of initial and optimum fitness function for cartoon-type rooster shape 

 

 
Figure 9: Curves of initial and optimum triangles quality for Cartoon-type rooster shape. 

 

 

4. Conclusions 

In this paper an unstructured triangular grid generation and smoothing algorithm is 

developed for arbitrary two-dimensional regions. The grid generation algorithm is based on 

a modified advancing front method and a set of heuristic rules to guarantee the efficient 

triangulation of complex regions. The developed algorithm gives a high priority for the 

smallest angle between any two adjacent segments during the triangulation process. The 

developed heuristics rules are designed to avoid many of the problems encountered during 

triangulation; such as, front overlapping and intersection, close proximity of neighboring 

triangles. 

Additionally, the algorithm uses an efficient branching strategy for triangle construction 

and selection. The grid generation algorithm also includes an efficient fast permutation 

algorithm to establish the connectivity of the triangular grid that is needed for the 

advancing front algorithm and for post-processing the developed grids. The results show 

that the grid generation algorithm is capable of generating high quality triangles for any 

complex two dimensional region. A smoothing algorithm is then developed to optimize the 

quality of the developed grid. The optimization process is implemented in two steps.  

First, diagonal swapping is implemented, followed by the floating-point genetic 

algorithm. Diagonal swapping is used according to a triangle quality that is based on the 
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aspect ratio. The second step in the optimization process employs a floating-point genetic 

algorithm that is more flexible than the usual binary genetic algorithms. Three approaches 

are used in selecting the function to be optimized in the genetic algorithm, namely, the least 

square error of the variation of angles, the average of the aspect ratio of triangles at each 

node of the triangular grid, and a linear combination of both approaches. The results clearly 

show the marked improvement in the quality of the optimized grids and the ability of 

floating point genetic algorithm to handle non-convex regions. 

Future research work may include the extension of the present method to the more 

difficult case of three dimensions to establish smooth tetrahedral grids for 3D regions. 
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 ملخص
 

 الوراثية. هذه الورقة تقدم طريقة للوصول الأمثل إلى الشبكات الثلاثية الغير بنيوية باستخدام خوارزمية النقطة العائمة

لقد تم استخدام خوارزمية لتوليد الشبكة الابتدائية الثلاثية الغير مستتوية نااعمتةب بالاعتمتال علتى طريقتة الواجمتة المتقدمتة 

 المعدلة وكذا مجموعات القوااين التجريبية.

اتة متن الخوارزميتة الثنائيتة الشبكة المتولدة تم تنعيمما باستتخدام خوارزميتة النقطتة العائمتة الوراثيتة التتي تعتبتر أكثتر مرو

الوراثيتة ، والتتتي تستتطيت التعامتتل متت المنتتاطس الغيتر مستتتوية نااعمتةب والتتتي تاتتو  علتتى عتدة امايتتات ماليتة ناتتتو ات 

 ماليةب 

تم استخدام ثلاث طرق لاختيار الدالة الملائمة والتي سيتم تاقيس الأمثلية لما باستخدام الخوارزمية الوراثيتة وهتذه الطترق 

 هي:

 اسبة أبعال المثلث ، الزاوية العظمى لكل عقده من الشبكة الثلاثية ، ومركب خطي وموزون من الدالتين.

الخوارزمية الوراثية تم فاصما والتأكد من صلاحيتما باستخدام عدل متن حتالات الاختبتار والتتي تغطتي مجموعتة واستعة 

 من تطبيقات الأشكال المندسية المعقدة.

ة عاليتة متتن التاستن فتي وجتول الشتبكة المنعمتة والقتتدرة علتى التعامتل متت منتاطس النتتو ات الغيتتر للت  النتتائع علتى لرجت

 مادبة.

 

 

 
  


