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ABSTRACT

In this paper we consider non-linear system of Volterra integral
equations of the second kind (NSVIEK?2), Three different kinds of
classic spline functions (Linear, quadratic and cubic) have been
modified and applied for the first time to treat the above system, A
comparison between approximate and exact results for two numerical
examples depending on the least-square error are given to show the
accuracy of the results obtained by using this method, Programs are
written in matlab program version 7.0.

Keywords: Three different kinds of classic spline function (Linear,
quadratic and cubic), system of nonlinear Volterra integral equations.

1. INTRODUCTION

Splines are functions that are mathematically equivalent to physical spline
used by draughtsman, A physical spline is a thin flexible rod held fixed at
certain points but is free to move between them, and subject of course to laws
of physics [8, 10].

Mathematical spline are piecewise polynomial, where pieces correspond
to interval between points that hold physical spline fixed, a set of knots
defines the intervals.

Al-Salhi; find numerical solution of non-linear Volterra integral equations
of the second kind [3], Al-Kahachi; Approximate method for solving
Volterra integral equations of the first kind [2], Abd-Al-Hammeed;
Numerical solution of Fredholm integro-differential equations using spline
functions [1].

2- CLASSIC SPLINE FUNCTIONS: [9]

Generally, impose a subdivision of the interval [a, b] as; A: a=Xe<X;<...<Xp.
=b

1 ’

And use a linear polynomial on each subinterval [x;, X;+]; i=0, 1,..., n-1,

Let AXi=Xi+1-X;, then |A|l=max{Ax;}, we control accuracy by choosing |A| as
small as is needed, thus ; under the assumption that the local error is mainly
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concentrated where the grid points are most distant, this of course; is not the entire story, as
it also depends on the spectrum of the data itself,
We will define a class of functions; S¥(A)={s:seC"[a,b], Spsg € P 1=1,2,0.,n=1}..(1),

Where m, k>0 and s’ (a) “classic spline functions of degree m and smoothness class

k” relative to the subdivision A, 50 S¥(A) has differentiable stricture of C¥,

The continuity assumption of (1) is that k™, derivative of s is continuous everywhere on
[a, b],and in particular; at the grid points x;, i=0, 1,..., n-1 of A,

If k=m, then s= Sr': consist of polynomial of degree m and whole interval [a, b], we

don’t want this, so k<m,
Three types of classic spline functions has been considered, they are in following;

2.1 Linear Classic Spline S*(x): [6]
Now; we want sesi(s), s. t. for fon [a, b]; S(x;)=S' where S eS'(x;),i=12,...,n,
It will be assumed that the interpolation points concede with grid locations x;, though that is

.ol 1 (SH,-Sh
not necessary, so we take; S*(x) = S + (x—X;)—2—,
(Xis=X;)
Therefore; gt(y) :[xi+1—x}s_1+(x—xi js_ll, for xi<xi+1<X, i=1, 2,...,n-1, ... (2),
h I h 1+
This shown schematically in figure (1);
A
S2 st

v

a=x, X, X3 X, Xs Xg X,

figure (1): Discretization of domain

2.2 Quadratic Classic Spline S%(x): [9]
Quadratic classic Spline is continuously differentiable pricewise quadratic function which

consists of n separated polynomial over each subinterval [X;, X+1], i.€. S€ S;(A), s. t. for f
on [a, b]; S(x,)=S? whereS? € S*(x,), i=12,..,n,
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Now; it is assumed that S’(X)=aX’+bX+c,, where S?(X) is piecewise quadratic
function which is continuously differentiable on each subinterval [x;, Xj+1], 0< 1 <n-1,
The formula for Siz (X) on [X;, Xi+1] taken from some polynomials P; of order 3, the i

polynomial piece made to satisfy condition; P;i(x))=fi(xi), Pi(Xi+1)=fi(Xis1) and P.(Xl) = fi'(xi),
in order to compute coefficient of i" polynomial piece P;, Newton form used as;
Pi=Pi(x)+(X-X)[Xi, Xis1]Pi+(X-X)°[Xi, Xiy Xia1]Pi .. (3),

And divided difference table for P; given as;

Pi(Xi) [Xi, Xi+1]Pi [Xi: Xis Xi+1]Pi
. dS? (%) 2
Xi fi(Xi) PI (Xi) =——" _M
X; fi(Xi) d X [Xi ! Xi+1]Pi d X
Xi | fi(Xisa) X, X;1]P; (Xi-X;)

For above; if the table substituting in (3), yields;

I S

Since se S;(A)

seC'[a, b], then we have; S, (X,,,) = f (X;,), i=0,L..,n-1,

, that is
Differentiating (4) w. r. t. x, gives; 4 gz 22 X) g2y, 26 X) oy g, =04 #0644 dS7(x)
dx (R h dx
Putting x=x;.., yields; ¢ g2 -4 g2 )+2(5i2(xi+1)‘3i2(xi)), o 08 _dS? Z(S.ZA s7) . (5),
dx M dx h dx  dx h

2.3 Cubic Classic Spline S*(x): [8]
Cubic classic Spline are the lowest order polynomial endowed with inflection points, and it
is a pricewise technique, which is very popular.

To find a cubic Spline S3(x) for which S*(x)=y;, i=0, 1,....n, ... (6),

We begin by investigating how many degrees of freedom are left in the choice of S3(x),
once it satisfies (6), the technique used will not lead directly to practical means for
calculating S3(x), but will furnish additional insight,

Write; Si2 (X =a,+b,x+ CiX2+diX3, Xia<X<xi, i=1,2,...,n, ... (7),

There are 4, unknown coefficients {a;, b;, ¢;, di}, the constraints are (6) and continuity

i i
restrictions, thus; %53(xi+0)=%33(xi_0) ... (8), together gives; n+1+3(n-1)=4n-2,
X X

Constraints; as compared with 4, unknowns, thus there are at least two degrees of
freedom in choosing the coefficient of (7),
Note that nothing has been said about value of S3(x) on [xo, X,], it is easy to construct an
extension to (-oo, o), although it will not be unique,
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2
Now we give method for constructing S*(x), Introduce notation M, =%33(Xi), i=0,1..,n,,
X

Since; S*(x) is cubic on [x;, Xis1], LZSS(X )is linear and thus;
dx? '
M, =9 go(x) = K IMiH OXIMus g g (9), where hiExix,
dx h,
dZ

S3(x) is continuous on [Xo, Xy],

with this formula
d x?

Integrate twice to get; 33(x)—( =X M+ (x= X)MHI+C(xi+l_x)+D(X_xi)lwith C, D

6h,
arbitrary,
The interpolating condition (6) implies; ¢ = Ji _ hM, . D= _M and so;
i 6 hi
SS(X) ( il ) MG:]'(X X)M|+1+( il )ylh(x X y|+1 h[ |+1 +(X_Xi)Mi+1l XiSXSXM, Oﬁlﬁn—l,(lo)
Thus (10) implies continuity of S*(x) on [a, b], as well as interpolating condition (6), To
determine Mg, My,..., M,, we require Lzzss(x) to be continuous at X1, Xo,..., Xp-1,
dx
. d?
lim —, L i=12,.,n-1, - (11),
x=>x; 0 X ;
on [Xi: _ —(X 1 X) M. +(X X) M|+l yi+1_yi—ﬁ[M<l—M-],v
2h, h, 6 '
2 2
and On[Xi-L xil; 3 X) — _(Xi_X) Mi—1+(x_xi—l) Mi + Yi —VYia —h[l\/l- -M ]
2h, h_, 6

Using (11) and some manipulation, yield; Mgy o Mth gy My V=¥ Y-V Yir
6 i-1 i 6 i+l hi hF1

(12),
For i=1, 2,..., n-1, this gives n-1 equations for n+1 unknowns Mg, My,..., M,, we generally
specify an endpoint condition at X, X, to remove two degrees freedom as in (12),
Casel: “The cubic natural interpolating spline”,

One particular choice of endpoint condition is to use; Mg=M,=0 ... (13),
This may appear, but it is based on the solution of following important problem, Among all
functions g(x), which are twice continuously differentiable on [a, b], and satisfy; g(x;)=y;,

b
i=0, 1,...,n, ... (14), Choose g minimizes integral; J‘[g"(x), (X)]zd X

The solution of problem above will be an interpolating function to the data in (14), And it
should contain a minimum of oscillatory behavior g"(x) because is small,
The solution is cubic spline S"(x), which satisfies (12) and (13),

The condition d253(2X ) _0°8° (X ) _o, has interpolation that S*(x) is linear on (-, Xo), (Xn, %),
dx dx’
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This can be given additional physical meaning by using theory of small deformation of thin
beam of an elastic material,
With the choice of (13) we have the system of equations; A M = D . (15),S. t;

o+ hy hy 0o .. 0
3 6 M,
A=\ L M =
0 hi—Z M M,
L 6 3
and D= hy —hy = o by =h s ha=h,,
hl hO o hnfl hn—z

This matrix is symmetric, positive definite and diagonally dominant, also the associated
linear system (15) can be easily and rapidly solved,
Casel: “Endpoint derivative conditions”,
To specify My, M, implicitly, impose conditioni33(x) at endpoints;
dx

d o d .

—S%(X,) =Yy, —S°(x,) =y, --- (16),
x> Ka)=Yor ST =Y,s

this leads to additional equations;

Ny Moy Yi-Yo B h_ Yo Ve

M.+ M 1 0 _ ,nian_l_nan: n_n n-1 (17)’

307 h, Yor 75 Maa T Y h,

The system composed of (13) and (17) is of order n+1, and it has exactly the same
properties as the earlier matrix A in (15) of casel.

3- THE ERRORS OF CLASSIC SPLINE FUNCTIONS

3-1 Theorem:
Let Xg, X,..., Xp, b€ distinct real numbers, and f be given real-value
function of C™,i. e. f has n+1-derivative on interval 1=X{t, Xo, X1,..., Xn}, With t

some given real number, then there exist £€l,, s. t. f(t) - p ()= (t=Xy)-{t-x,) M),

(n+1)!
Where p,(t Zj(x (1), and that 7,(1)= H[ ]/:0,1,...,n’

J#i

Proof:
Note that result is trivially true if t is any node point, since then both sides of (18) are
zero,

Assume t does not equal node point, define; E(X)=f(X)-pn(X), G(x) = E(x)-ME(t), Vxel
{

With p(x)= (X = X,)(X =X,)..(x =X, ), s0 G(x) is n+1time differentiable on I;, as E(x), y(x)
are,
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Also G(x,) = E(x ) ( E(t) i=0,1...n and G{t)=E(0)-E()=0> thus G has n+2 distinct
4

zero in Iy, _
when one uses the mean value theorem, G* has n+2distinct zero, inductively G9(x)

has n+2-j zero in I, for j=0, 1,..., n+1,

Let & be the zero of G™Y(x), G™(£)=0, since E™V(x)=f ™I(x), w "D(x)=(n+1)!, we
(n+1)!

wle)

E(t), E()= s W(tl))lf(m () give the desired result, and this may seem a tricky derivation, but

it is commonly used technique for obtaining some error formulas,

obtain; ™ (x)= f ™(x)-—LE(), substituting X=§ and solving for

4- SOLUTION OF SYSTEM OF NON-LINEAR VIE’S USING CLASSIC
SPLINE FUNCTIONS

In this section, we use classic Spline functions “quadratic and cubic” to find the numerical
solution of system of non-linear VIE’s of the form;

m X

ZJ' (% t,u,(0) di, xel=[ab].--(19), where meN, fis. t.i=1,2,.... n, assumed
J=i 0
to be continuous on |, and Kj;s. t. i, j=1, 2,..., m, denotes given continuous functions,

4-1 Using Linear Classic Spline Function S*(t):
A linear interpolation S'(t) with knots to, ti...., t,, in interval [t ti..] is given by;

SY(t) = 4,(1)S* + B,(1)S* (20), where , 4(1) = =" and B,(1) =

i+1

equation (20) into (19) gives; S, i=12,..n, With z=¢ and r=12,...n, so we get;

m_r=1 X1
S 3 IKU X, t[4,()S% + B.(0)S* .. 1)dt | i=12,...,m and r=12,.,n,~(2D)
Jj=1z=0
Where S = Sl.l(t,,) and £, = f,(¢,) and the iterated integral above are calculated

using Trapezoidal rule, the following algorithm is considered as solve a system of non-
linear VIE’s using linear classic Spline function as follows;

The algorithm (NSVIELSP);

Stepl:

a- Assume h:ﬁ’ nenN:
n

b-Set St = £y, i=12,..,m,
Step2:

To compute Sll,

(NLVIETRP),
Step3: In same way as in step2, and using (21) we compute Si,,S;r, St r=23,..0,

mr?

i=12,..,m we use stepl, put r=1 in (21) and using algorithm
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4-2 Using Quadratic Classic Spline Function S?(t):
Quadratic Classic Spline Sz(t) with knots tg, ty,..., t,, in [t ti1] can be written as;

2 2 dSz
S%(1)=4,(0)S? +B,(1)S%4 + D,(0) d; (22),
WhereiAi(t):l—(Z_}ll"j B()=1 and D,(1)= W
Putting (22) into (19) gives; u;; i=1,2,...,n, with t=t,, r=1,2,...,n, we get;
m r—2 z+l dSZ
Sp=rfi+ 22 I 1%, 1[4,()82 + B.()S.., + D. () —2] | dt
e d ..(23)

m | ds?,
{jK [x 1[4, (0)S? . +B,,(1)S?, +D,(1)—- ]]dt+} i=12,...,m,

J=1 X

Where S2=S7(¢) and f, = f.(t,), i=12,...m,
2
Now for r=1 we need to calculate dS"O, j=12..,m, we can find this value by
dt

differentiating (19) one- timew r. t. X, so we get;
n X dK (X1, u;

DY

u’:O :‘f“o +ZK1/(a’a’u/0)’ j:lzi"'lm7 e (24)1

=i

d ZKu XX u,(X), j=12,.m putting t=a, we obtain;

ds? dSZ

/rl

Jr 2(S2 _S2 1)
But for r=2,3,...,n we calculate by; L i=12..n ... (25),
dt a d g e

The following algorithm is considered to solve a system of non-linear VIE’s using
quadratic classic Spline functions,

The algorithm (NSVIEQSP);

Stepl:

b
a- Assume i=—, NeN,
n
b- Set Sl% =foo i=12,..,m,
Step2:
2
a_

b- To compute Sl.zl, i=12,..,m we use stepl and step2-a, put r=1 in (23) and

using algorithm (NLVIETRP),
Step3:

127



Classic Spline Functions for Approximate Solution of System of Non-Linear ... D. M. Al-rahal

2
a- Using step1, step2, to find 7’1 by putting i=0 in (25),
t

b- Putting r=2 in (23) to find SI.ZZ, i=12,...,m, and using algorithm (NLVIETRP),

Step4:
In same way as in step3, and using (21, 25) we compute;
ds?, ng
d; , 8%, —2,8%...and so on, j=12,.

4-3 Using Cubic Classic Spline Function S3(t):
A cubic Classic Spline S3(t) with knots to, ti,..., t,, in [t;, ti.q] can be written as;
aIS3 dS3

S3(t) = 4.(1)S?} D(t) ol .. (26), where;

z+l

t-t, 2 t-t, a N L 2 B it 2’
A,.(t):l—s[ ; j +2( h j’B‘(t)_l A1), C(6)=(t ti)( p j and D.(t)=(t- t,ﬂ)( - j

Substituting (26) in (19) gives; u;; i=1,2,...,n, with t=t,, r=1,2,...,n, we get;
m r=2 dS3 dSZ

=1, +ZZ{ j {XV,I[A (1S3 +B.(1)S3_, +C. (t)T;’+DZ(t) a’lt”]] dt}

.(27)

L g’ 3 3 3 dS ;3, r-1 dS ?r .
+) j Ky| X, 114,108, + B (08, + C.00—2=+ D, (0= dt+! i=12,...m,

3 d53
i\l ) - yreny ymo
Where S = ( t) and f,=fi(t), i=12,.,m, we calculate " ;_12 ., by equation;
dt

3 3 3
Bira __Birs 4B | 3(Sm ~ ""*1), j=12..,n ... (28),
dt dt dt h
The following algorithm is considered to solve a system of non-linear VIE’s using Cubic
classic Spline functions,
The algorithm (NSVIECSP);

Stepl:

Assume h:%, nen.andset §3 = i=12..,m,

Step2:
ds?, , :
a- To calculate ——/° we use stepl, with equation (24),
dt

b- To compute Si, i=12,..,m, use stepl, 2-a, put r=1 in (27) and use (NLVIETRP),
Step3:

3

a- Using step1, step2, to find 5 , by putting i=0 in (28),
dt
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b- Putting r=2 in (21) to find Sl.32, i=12,...,m, and using algorithm (NLVIETRP),

Step4:
In same way as in step3, and using (27, 28) we compute;
s, ds?, .
= . 8%, — ,S%,...and so on, j=12..,m,

5- NUMERICAL EXAMPLES
5-1 Example:

Consider problem; , ) - 11— ) + [ (x-)u, () de and u, () =-(xe* ~2¢™ +3+ [1e™s ap-
0 0

L . . 1
Which is system of two non-linear VIE’s with; u,(X) =—=x, u,(X) =€",
2

Tables (1, 2), present comparison between exact and numerical solution using classic
Spline “Quadratic and Cubic”, for respectively depending on last square error and running
time with h=0.1,

Table(1),

Table(2),

Exactl

LSP

QSP

CSP

0.0

0

0

0

0

0.1

-5.0000e-002

-5.2151e-002

-5.2151e-002

-5.0351e-002

0.2

-1.0000e-001

-1.0356e-001

-1.0294e-001

-1.0074e-001

0.3

-1.5000e-001

-1.5456e-001

-1.5384e-001

-1.5117e-001

0.4

-2.0000e-001

-2.0642e-001

-2.0503e-001

-2.0165e-001

0.5

-2.5000e-001

-2.5827e-001

-2.5638e-001

-2.5216e-001

0.6

-3.0000e-001

-3.0903e-001

-3.0832e-001

-3.0285e-001

0.7

-3.5000e-001

-3.6983e-001

-3.6043e-001

-3.5315e-001

0.8

-4.0000e-001

-4.4377e-001

-4.1377e-001

-4.0558e-001

0.9

-4.5000e-001

-4.6974e-001

-4.6712e-001

-4.6108e-001

1.0

-5.0000e-001

-5.4390e-001

-5.2290e-001

-5.0261e-001

L.S.E.

6.2481e-002

1.2791e-003

1.8818e-004

R.T.

0.118000

0.141000

0.156000

Exact2

LSP

QSP

CSP

0.0

1.0000e+000

1.0000e+000

1.0000e+000

1.0000e+000

0.1

1.1052e+000

1.1053e+000

1.1053e+000

1.1053e+000

0.2

1.2214e+000

1.2207e+000

1.2207e+000

1.2218e+000

0.3

1.3499e+000

1.3484e+000

1.3484e+000

1.3504e+000
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0.4

1.4918e+000

1.4889e+000

1.48893e+000

1.4925e+000

0.5

1.6487e+000

1.6449e+000

1.6449e+000

1.6494e+000

0.6

1.8221e+000

1.8159e+000

1.8159e+000

1.8227e+000

0.7

2.0138e+000

2.0067e+000

2.0067e+000

2.0135e+000

0.8

2.2255e+000

2.2154e+000

2.2154e+000

2.2261e+000

0.9

2.4596e+000

2.4488e+000

2.4488e+000

2.4662e+000

1.0

2.7183e+000

2.7052e+000

2.7052e+000

2.7108e+000

L.S. E.

7.1242e-002

5.0352e-003

1.0218e-004

R.T.

0.118000

0.141000

0.156000

D. M. Al-rahal

Tables (3), presents the error and running time for Cubic classic Spline when h is changing
and initial value is fixed,

H=0.1

H=0.05

H=0.02

H=0.01

CSpP

1.8818e-004

2.0280e+919

8.3653e+067

NaN

1.0218e-004

8.8485e+006

2.1605e+003

NaN

R.

T.| 0.156000

0.421000

2.235000

9.047000

Tables (4), presents the error and running time for Cubic classic Spline when initial value is
changing and h is fixed,

(AVA

Uy

Uy R.T.

0.0

1.8818e-004

1.0218e-004

0.156000

0.001

3.0520e-004

3.4644e-005

0.141000

0.01

2.5423e-003

1.2761e-002

0.140000

0.1

1.8072e-001

9.7074e+001

0.156000

0.5

3.2369e+003

5.4064e+002

0.157000

5-2 Example:

Consider problem; e, :(x—x2)+j(ul(t)+u2(t))dt and

Which is system of two non-linear VIE’s with; u,(X) = x,
Tables (5, 6), present comparison between exact and

0

2 3
X X

009 = -+

2 3
Uy (%) =x,

[z +uy )

numerical solution using classic
Spline functions “Quadratic and Cubic”, for u,(f) and u,(r) respectively, depending on last
square error and running time with h=0.1,

Table(5),
t Exactl LSP QSP CSP
0.0 0 0 0 0
0.1 | 1.0000e-001 |5.4933e-002 | 7.9233e-002 | 9.9233e-002
0.2 | 2.0000e-001 | 0.9345e-001 | 1.8245e-001 | 1.9985e-001
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Tables (7), presents the error and running time for Cubic classic Spline when h is changing
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0.3 | 3.5000e-001 | 2.4384e-001 | 2.6754e-001 | 2.9985e-001
0.4 | 4.0000e-001 | 3.5818e-001 | 3.7858e-001 | 3.9978e-001
0.5 | 5.5000e-001 | 4.3855e-001 | 4.5185e-001 | 4.9990e-001
0.6 | 6.0000e-001 | 5.6667e-001 | 5.7617e-001 | 5.9930e-001
0.7 | 7.5000e-001 | 6.0101e-001 | 6.2291e-001 | 7.0134e-001
0.8 | 8.0000e-001 | 7.5892e-001 | 7.8202e-001 | 7.9354e-001
0.9 | 9.5000e-001 | 7.6116e-001 | 7.6346e-001 | 8.7086e-001
1.0 |1.0000e+000 |1.0294e+000|1.0200e+000|1.0054e+000
L.S. E. 2.1189e-001 | 3.0450e-002 | 9.2268e-004
R.T. 0.097000 0.109000 0.141000
F Exact2 LSP QSP CsP
0.0 0 0 0 0
0.1 | 1.0000e-001 |8.1805e-002 | 9.1805e-002 | 9.9805e-002
0.2 |2.0000e-001 | 0.9999e-001 | 1.9027e-001 | 2.0025e-001
0.3 |3.0000e-001 | 2.1821e-001 | 2.8477e-001 | 3.0042e-001
0.4 |4.0000e-001 | 3.5679e-001 | 3.8472e-001 | 4.0052e-001
0.5 |5.0000e-001 | 4.6881e-001 | 4.7021e-001 | 5.0081e-001
0.6 |6.0000e-001 |5.7678e-001 | 5.8190e-001 | 6.0038e-001
0.7 |7.0000e-001 | 6.2789e-001 | 6.4163e-001 | 7.0259e-001
0.8 |8.0000e-001 | 7.8119e-001 | 7.9791e-001 | 7.9489¢-001
0.9 |9.0000e-001 | 7.7821e-001 | 7.8992e-001 | 8.7128e-001
1.0 |1.0000e+000|1.1981e+000|1.1935e+000 |1.0046e+000
L.S.E. 7.5391e-001 | 2.8080e-002 | 8.8035e-004
R.T. 0.97000 0.109000 0.141000

and initial value is fixed,

Tables (8), presents the error and running time for Cubic classic Spline when initial value is

H=0.1

H=0.05

H=0.02

H=0.01

CSP

9.2268e-004

1.0507e-005

NaN

NaN

8.8035e-004

7.2419e-006

NaN

NaN

R.T.

0.141000

0.359000

1.875000

7.485000

changing and h is fixed,

LV.

Uy

Uy R.T.

0.0

9.2268e-004

8.8035e-004

0.141000
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0.001| 9.2269e-003 | 8.8488e-003 | 0.141000
0.01 | 5.7983e-001 | 2.7313e-000 | 0.141000
0.1 |6.2564e-002 |5.8120e+004|0.140000
0.5 |4.5803e+004|3.8322e+007 |0.141000

6- DISCUSSION

This Paper; introduce numerical methods for approximation solution of system of non-
linear VIE’s, which are classic Spline “Linear classic Spline, Quadratic classic Spline, Cube
classic Spline”, we have tried to emphasize some important ideas while maintaining a
reasonable level of complexity, for one thing; we have always used a uniform step size,
This method for solving a system of non-linear VIE’s has some advantages and
disadvantages, the following remarks are concluded;
- The cube classic Spline gives better accuracy than Quadratic classic Spline,
- The quadratic classic Spline gives better accuracy than Linear classic Spline,
- The running time of quadratic classic Spline is less than running time of cubic

classic Spline,
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