On A Class of Locally Convex Involution Algebras

Abdullah Ghalib H. AL-Wosabi

Department of mathematics, College of Education – Arhab , Sana'a University, Sana'a, YEMEN

ABSTRACT

In this paper we introduced a class of locally convex involution algebras called MBG*-algebras as generalized of GB*-algebras was introduced by Allan. We obtain some results on this class and established a necessary and sufficient conditions for a commutative MGB*-algebra to be symmetric.

Mathematics Subject Classifications: 46A03, 46K05,46H05. *Keywords*: Locally convex *-algebras; GB*-algebras; symmetric *algebras; hermitian algebras.

1. INTRODUCTION

Since the theory of Banach algebras has undergone considerable development, the concepts of locally convex *-algebras and pseudo-complete locally convex *-algebras (PL*-algebras) was introduced by Allan [1] and as generalizations of normed *-algebras and in particular Banach *-algebras. In [2], Allan defined a class of locally convex *-algebras called GB*-algebras as a generalization of B*-algebras. In this paper we introduced a new class of locally convex *-algebras (definition (3.3)) as a modification of GB*-algebras. This class is more general of the definition of GB*-algebras introduced by Allan [2]. The required definitions and results from books and research papers (cited in the bibliography) are listed in §2.

In §3 we obtain some results on locally convex MBG*-algebras and establish a necessary and sufficient conditions for a commutative MGB*-algebra to be symmetric, Theorem (3.11).

2. LOCALLY CONVEX*-ALGEBRAS

We shall use the basic terminologies of definitions and results of this section from books and research papers cited in the bibliography.

DEFINITION 2.1 [7] A *-*algebra* is an associative linear algebra *A* over the complex filed \mathbb{C} with an involution * satisfying the usual axioms

(i) $(\lambda x + \mu y)^* = \overline{\lambda} x^* + \overline{\mu} y^*$ $(x, y \in A; \lambda, \mu \in C)$; (ii) $(xy)^* = y^* x^*$ $(x, y \in A)$;

On A Class of Locally Convex Involution Algebras

(*iii*) $x^{**} = x$ ($x \in A$).

An element $x \in A$ will be called hermitian if $x^* = x$ and normal if $x^*x = xx^*$. The set of all hermitian elements of A will be denoted by A_{h} .

DEFINITION 2.2 [1] A *locally convex algebra* is an associative linear algebra A over the complex filed \mathbb{C} equipped with a topology τ such that

(i) (A, τ) is a Hausdorff locally convex topological vector space;

(ii) for any element $x_0 \in A$ the maps $x \to x_0 x$ and $x \to xx_0$ of A into itself are continuous.

DEFINITION 2.3 [1] Let *E* be a locally convex space. A subset *B* of *E* is said to be *bounded* if for each neighborhood *V* of the origin, there is $\lambda > 0$ such that $B \subseteq \lambda V$.

DEFINITION 2.4[1] Let A be a locally convex algebra. An element $x \in A$ is *bounded* if and only if for some non-zero $\lambda \in \mathbb{C}$ the set $\{(\lambda x)^n : n = 1, 2, ...\}$ is a bounded subset of A. The set of all bounded elements of A will be denoted by A_0 .

REMARK 2.5 Every element of a normed algebra is bounded so for each normed algebra A, $A = A_0$.

NOTATION 2.6 If A is a locally convex algebra, then \mathcal{B}_1 will denote the collection of all subsets B of A such that

(i) *B* is absolutely convex and $B^2 \subseteq B$,

(ii) *B* is bounded and closed.

For each $B \in \mathcal{B}_1$, let A(B) denote the sub-algebra of A generated by B. Then from (i) and (ii)

 $A(B) = \{\lambda x \colon \lambda \in \mathbb{C}, x \in B\}.$

And the Minkowski functional

 $\|x\|_{B} = \inf\{\lambda > 0 \colon x \in \lambda B\} \ (x \in A(B)),$

defines a norm on A(B), which make A(B) a normed algebra. Unless mention is made to the contrary, it will always be assumed that A(B) carries the topology induced by this norm.

DEFINITION 2.7[1] The locally convex algebra A is called *pseudo-complete algebra* if and only if each normed algebra A(B) ($B \in \mathcal{B}_1$) is complete (Banach algebra) and denoted by PL-algebra.

DEFINITION 2.8 A subcollection \mathcal{B}_2 of \mathcal{B}_1 is said to be *basic* in \mathcal{B}_1 if for every \mathcal{B}_1 in \mathcal{B}_1 there is some \mathcal{B}_2 in \mathcal{B}_2 such that $\mathcal{B}_1 \subseteq \mathcal{B}_2$.

PROPOSITION 2.9 Let A be a locally convex algebra and let \mathcal{B}_2 be any basic subcollection in \mathcal{B}_1 . Then

 $A_0 = \bigcup \{A(B): B \in \mathcal{B}_2\}.$

Proof. See [1] Proposition(2.4).

PROPOSITION 2.10 Let *A* be a locally convex algebra. If *A* is sequentially complete then *A* is pseudo-complete but not conversely.

Proof. See [1] Proposition(2.6) and example1.

DEFINITION 2.11 If A is a locally convex algebra, then the radius of boundedness, $\beta(x)$, of x is defined by

$$\beta(x) = \inf\{\lambda > 0: \{(\lambda^{-1}x)^n : n = 1, 2, ...\} \text{ is bounded }\}$$

with the convention $inf\phi = +\infty$.

DEFINITION 2.12 (i) Let A be a locally convex algebra with identity e and let $x \in A$.

The spectrum of x in A denoted by $\sigma_A(x)$ (or just $\sigma(x)$), is that subset of \mathbb{C}^* (The extended of \mathbb{C}) defined as follows

(a) for $\lambda \neq \infty$, $\lambda \in \sigma(x)$ if and only if $\lambda e - x$ has no inverse belonging to A_0 (i.e. has no bounded inverse),

(b) $\infty \in \sigma(x)$ if and only if $x \notin A_0$.

(ii) If A has no identity, we define $\sigma_A(x) = \sigma_{A_s}(x)$,

where A_{e} is the unit adjoint. By [1] A is PL-algebra if and only if A_{e} is PL-algebra.

DEFINITION 2.13 Let A be a locally convex algebra with identity e and let $x \in A$.

Then the spectral radius of x in A denoted by $r_A(x)(or just r(x))$ will be defined by

$$r_{A}(x) = \sup\{|\lambda|: \lambda \in \sigma(x)\}.$$

THEOREM 2.14 Let A be a locally convex algebra and let $x \in A$. Then

 $\beta(x) \le r(x)$ and if A is PL-algebra then $\beta(x) = r(x)$.

Proof. See [1] Theorem(3.12).

DEFINITION 2.15 A locally convex *-algebra is a locally convex algebra with a continuous involution. And a pseudo-complete locally convex *-algebra (PL*-algebra) is a PL-algebra with a continuous involution.

PROPOSITION 2.16 A closed subalgebra of pseudo-complete algebra (resp. *-algebra) is itself pseudo-complete algebra (resp. *-algebra).

Proof. See [1] Proposition(2.8).

PROPOSITION 2.17 If A is a commutative pseudo-complete algebra (resp. *-algebra) then A_0 is a subalgebra (resp. *-algebra) of A.

Proof. See Corollary(2.11) in [1].

DEFINITION 2.18 Let A be a locally convex*-algebra. The involution in A is said to be hermitian if for each $h \in A_h$, $\sigma_A(h)$ is real.

PROPOSITION 2.19 Let A be a PL*-algebra with identity e. If $x \in A$ such that $\beta(x) < 1$ then there exists $y \in A$ such that $2y - y^2 = x$, furthermore if $x \in A_h$ then also $y \in A_h$.

Proof. See [6] Lemma1.

REMARK 2.20 If *A* is a complex *-algebra then every element has a unique representation in the form x=h+ik where *h* and *k* are hermitian. In fact $h = \frac{x+x}{2}$ and $k = \frac{x-x}{2i}$.

THEOREM 2.21 Let A be a real or complex algebra and let P(x) be any polynomial with coefficients in the field of the scalars of A and with constant term zero in case A does not have an identity. Then, for every $x \in A$, $P(x) \in A$ and $P(\sigma_A(x)) = \sigma_A(P(x))$.

Proof. See [7] Theorem(1.6.10).

PROPOSITION 2.22 Let A be a locally convex algebra. Then

(i)Any subset or any scalar multiple of a bounded set is bounded,

(ii)Any finite union or sum of bounded sets is bounded,

(iii)The image by a continues linear mapping of a bounded set is bounded,

(iv)The closure, convex envelope and absolutely convex envelope of a bounded set are bounded.

Note: The following propositions (Proposition 2.23 and Proposition 2.24) was we obtained in another work (as a paper) and we need them in this paper, so we also give him prove here.

PROPOSITION 2.23 If A is a locally convex*-algebra with identity e. Then (i) If $x \in A_0$, then x^2 and $x - x^2 \in A_0$,

(ii) If $x^2 \in A_0$, then $x \in A_0$.

Proof. (i) let
$$x \in A_0$$
, then there exists $\lambda \neq 0$ such that

 $S_1 = \{(\lambda x)^n : n = 1, 2, \dots\}$ is a bounded set in A and $S_1 \subseteq A_0$. Let

$$S_1 = R_0$$
. Let
 $S_2 = \{(\lambda^2 x^2)^n : n = 1, 2, ...\}$

 $S_2 = \{ (\Lambda^- x \ j \ : n - 1, 2, \dots \}$ It is clear that $S_2 \subseteq S_1$. Since every subset of a bounded set is bounded, then S_2 is a bounded set and thus $x^2 \in A_0$. Also $\lambda^{-1}S_1$ and $\lambda^{-2}S_2$ are bounded sets, then by Proposition(2.22) $\lambda^{-1}S_1 - \lambda^{-2}S_2$ is a bounded set. Since $x - x^2 \in \lambda^{-1}S_1 - \lambda^{-2}S_2$, then $x - x^2 \in A_0$.

.. }

(ii)Suppose $x^2 \in A_0$. Then there exists $\lambda \neq 0$ such that the set $S_1 = \{(\lambda^2 x^2)^n : n = 1, 2, ...\}$

is bounded. Let $S_2 = S_1 \cup \lambda x S_1 \cup \{\lambda x\}$. Since A is a locally convex*-algebra then for each $y \in A$ the function

$$f_y: A \to A, \qquad f_y(x) = yx$$

is a continuous function. Since S_1 and $\{e\}$ are bounded sets in A and by Proposition(2.22) the image by a continuous function of a bounded set is bounded, and since

$$f_e(S_1) = S_1, f_{\lambda x}(S_1) = \lambda x S_1, and f_{\lambda x}(\{e\}) = \{\lambda x\}.$$

then S_1 , $\lambda x S_1$ and $\{\lambda x\}$ are bounded sets in A. Since any finite union of bounded sets is a bounded set, therefore $S_2 = S_1 \cup \lambda x S_1 \cup \{\lambda x\}$ is a bounded set in A. since $\{(\lambda x)^n : n = 1, 2, ...\} \subseteq S_2$

Then the set

 $\{(\lambda x)^n : n = 1, 2, ...\}$ is a bounded set. Therefore $x \in A_0$. \Box

PROPOSITION 2.24 Let A be a locally convex*-algebra with identity e. If the involution in A is hermitian then for every $h \in A_h$, $e + h^2$ has a bounded inverse. Further, the element $h(e + h^2)^{-1}$ is also bounded.

Proof. Assume that the involution in A is hermitian and let $h \in A_h$, then $\sigma_A(h)$ is real and by Theorem(2.21), $\sigma_A(h^2) = (\sigma_A(h))^2$. Then $\sigma_A(h^2)$ is non-negative real and hence $-1 \notin \sigma_A(h^2)$. Thus $e + h^2$ has a bounded inverse. Put $u = h(e + h^2)^{-1}$. Then $u^2 = h^2 (e + h^2)^{-2} = (e + h^2)^{-1} - (e + h^2)^{-2}$. Since $(e + h^2)^{-1} \in A_0$ then by Proposition(2.23) u^2 and then $u \in A_0$.

3. MGB *-ALGEBRAS

In this section we introduced a new class of locally convex algebras with an envolution socalled MGB*-algebras, as a modification of GB*-algebras was introduced in [2] by Allan, and show that each commutative MGB*-algebra is symmetric if and only if the involution is hermitian.

Notation 3.1 (a) If A is a locally convex *-algebra with identity e, as [2] then \mathscr{B} will denote the collection of subsets B of A satisfying:

(i) *B* is absolutely convex, closed and bounded;

(ii) $e \in B$, $B^2 \subseteq B$ and $B^* = B$.

And write $\boldsymbol{\mathcal{B}}^* = \{B \in \boldsymbol{\mathcal{B}}' : B = B^*\}.$

(b) If A is a topological *-algebra with identity e, as [4] then \mathcal{B}^* will denote the collection of subsets B of A satisfying:

(i) *B* is closed and bounded;

(ii) $e \in B$, $B^2 \subseteq B$ and $B^* = B$.

Allan[2] defined a GB*-algebra as follows

DEFINITION 3.2 [2] A GB*-algebra is a locally convex *-algebra A with identity e such that

(i) $\boldsymbol{\mathcal{B}}^*$ has a greatest member $\boldsymbol{B}_{\boldsymbol{\mathcal{O}}}$,

(ii) A is symmetric,

(iii) A(B) is a Banach *-algebra for each B in \mathcal{B}^* .

Dixon in [4] modified Alln's definition of GB*-algebras by defining it as follows:

A GB*-algebra is a topological *-algebra A such that

(i) \mathcal{B}^* has a greatest member B_0 and B_0 is absolutely convex,

(ii) A is symmetric,

(iii) $A(B_0)$ is a Banach *-algebra.

We now come to the definition of the class of algebra so-called MGB*-algebras which is more general than the GB*-algebras (Allan's[2] definition).

DEFINITION 3.3 A MGB*-algebra is a locally convex *-algebra A with identity e such that

(i) \mathcal{B}^* has a greatest member B_0 and B_0 is absolutely convex,

(ii) $A(B_0)$ is a Banach *-algebra.

REMARK 3.4 Every GB*-algebra (as in [2]) is a MGB*-algebra but not conversely. It is clear that each GB*-algebra is a MGB*-algebra. To show that the converse is not true in general, consider the *-algebra A of all complex polynomials, p; endowed with the topology τ of uniform convergence on compact subsets of the positive real line. It is easy to see that A_0 consists just of the constant functions and that \mathscr{B} * has a greatest member B_0 , namely the set of all constant functions not exceeding unity in absolute value and $A(B_0)$ is a Banach *-algebra. Thus A is a MGB*-algebra. Now let $p \in A$ defined by $p(x) = x^2$ and let $q = I + pp^*$ where I is the identity map then $q(x) = x + x^2$. It is clear that $q \in A$ has not a bounded inverse in A. Thus A is not symmetric. Therefore A is not a GB*-algebra.

PROPOSITION 3.5 Let A be a MGB*-algebra. Then the subspace $A(B_0)$ contains all hermitian elements of A_0 .

Proof. Let h be a hermitian element of A_0 then there exists a real $\lambda \neq 0$ such that $S = \{(\lambda h)^n : n = 1, 2, ...\}$ is a bounded set. Therefore $B = \overline{S \cup \{e\}}$ is bounded (where denote the closure in A). Thus B is closed, $e \in B$, $B^2 \subseteq B$ and $B^* = B$. Hence $B \subseteq B_0$. Since $\lambda h \in B$ then $\lambda h \in B_0$. Therefore $h \in A(B_0)$.

COROLLARY 3.6 If A be a symmetric MGB*-algebra, then for each $x \in A$. $(e + x^*x)^{-1} \in A(B_o).$

Proof. Let $x \in A$. Since A is symmetric then $(e + x^*x)^{-1} \in A_0$. Since $(e + x^*x)^{-1}$ is hermitian element of A_0 then by Proposition (3.5), $(e + x^*x)^{-1} \in A(B_0)$.

PROPOSITION 3.7 If A be a symmetric MGB*-algebra, then for each $x \in A$, $x^*x(e + x^*x)^{-1} \in A(B_0).$

Proof. Let $x \in A$. Since A is symmetric then bv Corollary (3.6). $(e + x^*x)^{-1} \in A(B_0)$. Let

 $u = x^* x (e + x^* x)^{-1} = e - (e + x^* x)^{-1}$. Since both e and $(e + x^* x)^{-1}$ are elements of $A(B_0)$ and since $A(B_0)$ is a *-subalgebra then $e - (e + x^*x)^{-1} \in A(B_0).$

Hence $x^*x(e+x^*x)^{-1} \in A(B_o)$.

PROPOSITION 3.8 Let A be a MGB*-algebra and let x be any element of A_h such that $\beta(x) < +\infty$, then there exists an element $v \in A_h$ such that $v^2 = x$.

Proof. Let $x \in A_h$ such that $\beta(x) < +\infty$, then $x \in A_h \cap A_0$ and then there exists a real $\lambda \neq 0$ such that $S = \{(\lambda x)^n : n = 1, 2, ...\}$ is a bounded set. Let $B = \overline{S \cup \{e\}}$ then B is bounded, closed, $e \in B$, $B^2 \subseteq B$ and $B^* = B$. Hence $B \subseteq B_0$. Since $\lambda x \in B$ then $\lambda x \in B_{\rho}$.

Therefore $x \in A(B_0) \subseteq A_0$. Since $A(B_0)$ is a Banach *-algebra then by Proposition (2.19) and by [7] Lemma(4.7.2), there exists $v \in A_h$ such that $v^2 = x$.

PROPOSITION 3.9 Let A be a commutative MGB*-algebra and hermitian involution. Then A is symmetric.

Proof. Suppose that the involution on A is hermitian and let $x \in A$, then by Remark(2.20) x has the form x = h + ik where $h, k \in A_h$ then $x^*x = h^2 + k^2 \in A_h$ and then by Proposition(2.24) and Prop $(e+h^2)^{-1}$, $(e+k^2)^{-1}$, $h(e+h^2)^{-1}$ and $k(e+k^2)^{-1}$ are Proposition(3.5), hermitian elements of A_0 and then of $A(B_0)$. Let

Clearly h_1 , $k_1 \in A(B_0) \subseteq A_0$ and h_1 , $k_1 \in A_h$. Since $h_1^2 + k_1^2 \in A(B_0) \cap A_h$ then by Proposition (3.8) there exists $v_1 \in A_h$ such that $h_1^2 + k_1^2 = v_1^2$. Then $h^2 + k^2 = v_1^2(e + h^2)^2(e + k^2)^2 = v^2$, where $v = v_1(e + h^2)(e + k^2) \in A_h$. Thus $e + x^*x = e + h^2 + k^2 = e + v^2 \in A_h$.

Since the involution on A is hermitian and $e + x^*x = e + v^2 \in A_h$ then by Proposition(2.24) $e + v^2$ and then $e + x^*x$ has a bounded inverse. Therefore A is symmetric. \Box

PROPOSITION 3.10 Let *A* be a locally convex*-algebra with identity *e*. If *A* is symmetric then the envolution on *A* is hermitian.

Proof. Suppose that A is symmetric and let $h \in A_h$. We claim that that $\sigma_A(h)$ is real if this is not true then there is $h \in A_h$ such that $\sigma_A(h)$ contains a complex number

$$a + ib, \text{ where } a, b \in \mathbb{R} \text{ and } b \neq 0. \text{ Defin}$$
$$k = \frac{ah^2 + (b^2 - a^2)h}{b(b^2 + a^2)}.$$

Then $k \in A_h$ and by Theorem (2.21),

$$\sigma_{A}(k) = \frac{a\left(\sigma_{A}(h)\right)^{2} + (b^{2} - a^{2})\sigma_{A}(h)}{b(b^{2} + a^{2})}$$

Since
$$a + ib \in \sigma_A(h)$$
 then

$$\frac{a(a+ib)^2 + (b^2 - a^2)(a+ib)}{b(b^2 + a^2)} \in \sigma_A(k) \Rightarrow -1\epsilon\sigma_A(k^2),$$

which implies that $e + k^2$ has no bounded inverse in A, which is a contradiction with the hypothesis. Therefore the involution on A is hermitian. \Box

THEOREM 3.11 Let *A* be a commutative MGB*-algebra. Then *A* is symmetric if and only if the involution is hermitian.

Proof. Since each MGB*-algebra is a locally convex*-algebra. Then the result follows from Proposition(3.9) and Proposition (3.10). \Box

COROLLARY 3.12 Let A be a commutative PL*-algebra with identity. Then A is symmetric if and only if the involution is hermitian.

Proof. Since each commutative PL *-algebra A with identity is a commutative MGB *-algebra. Then by Theorem (3.11) A is symmetric if and only if the involution is hermitian. \Box

REFERENCES

[1] G. R. Allan, A spectral theory for locally convex algebras, *Proc. London Math. Soc.* (3) **15** (1965) 399-421.

[2] G. R. Allan, On a class of locally convex algebras, *Proc. London Math. Soc.* (1) 17 (1967) 91-114.

[3] P. G. Dixon, Generalized B*-algebras, Proc. London Math. Soc. (3) 21 (1970) 693-715.

[4] G. Kothe, Topological vector space I, Springer Verlag, Berlin, 1969.

[5] M. A. Naimark , Normed algebras, Noordhoff, Gorningen, 1972.

[6] J. D. Powell, Representations of locally convex *-algebras, Proc. A. M. Soc. (2) 44, (1974) 341-346.

[7] C. E. Ricart, General theory of Banach algebras, Van Nostrand, Princeton, 1974.

[8] A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge, 1973.

[9] B. P. Rynne and M. A. Youngson, Linear Functional Analysis , *Springer-Verlag, London Limited*, 2008.

[10] K. Saxe, Beginning Functional Analysis, Springer, New York, 2002.

TUJNAS, 2012 A(5) 137-145

حول صنف جبور ملتفة محدبة موضعياً

عبدالله غالب حسن الوصابي

قسم الرياضيات - كلية التربية أرحب - جامعة صنعاء - الجمهورية اليمنية

ملخص

في هذا البحث قدمنا صنف من الجبر الملتف المحدب موضعياً رمزنا له بالرمز *MGB كتعميم للجبر *GB المقدم من Allan. أحرزنا بعض النتائج في هذا الصنف كما حصلنا على الشروط الضرورية والكافية لأن يكون الجبر *MGB جبراً متناظراً.