Thamar University Journal of Natural & Applied Sciences 8(1) (2023) 1-16

Thamar University Journal of Natural & Applied Sciences (TuJNAS)

Journal website: www.tu.edu.ye/journals/index.php/TUJNAS/index

ORIGINAL ARTICLE

Partial Pre-Normality

Sadeq Ali Saad Thabit*

Affliations:

Department of Mathematics, Faculty of Education Almahra, Hadhramout University, Yemen

Corresponding Author: Sadeq Ali Saad Thabit, Email: <u>sthabit1975@gmail.com</u> & <u>sthabit1975@hu.edu.ye</u>

Received: Mar 1, 2023,

Accepted Date: May 11, 2023,

Online Date: Jun 12, 2023

Published: Jun 13, 2023

DOI: https://doi.org/10.59167/tujnas.v8i1.1 485

Keywords

Partially normal; Pre-normal; Almost pre-normal; Mildly pre-normal; Quasi pre-normal

Abstract

The main purpose of this paper is to study a new weaker version of pre-normality called partial pre-normality, which lies between almost pre-normality (resp. quasi pre-normality) and mild pre-normality. A space is called a partially prenormal space if for any two disjoint closed subsets of , one of which is closed domain and the other is -closed, can be separated by two disjoint pre-open subsets. We investigate this property and present some examples to illustrate the relationships between partial pre-normality and other weaker kinds of both pre-normality and pre-regularity.

1. Introduction

Throughout this paper, a space X always means a topological space on which no separation axioms are assumed, unless explicitly stated. The symbols \mathbb{R}, \mathbb{Q} and \mathbb{P} denote to the set of real, rational and irrational numbers, respectively. For a subset A of X, X \land A and int(A) denote to the complement, the closure and the interior of A in X, respectively. A subset A of X is said to be a *regularly-open* set or an *open domain* set if it is the interior of its own closure, or equivalently if it is the interior of some closed set [1]. A complement of an open domain subset is called closed domain. A subset A of X is called a π -closed set if it is a finite intersection of closed domain sets [2]. A complement of a π -closed set is called π -open. Two sets A and B of X are said to be *separated* if there exist two disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$ [3,4,5]. A subset A of X is said to be a *pre-open* set [6] if $A \subseteq V$ $int(\overline{A})$. A subset A of X is said to be semi open if $A \subseteq int(A)$ [7]. A subset A of X is called α open if $A \subseteq int(int(A))$ [8]. A space X is called a *pre-normal* space [9] if any two disjoint closed subsets A and B of X can be separated by two disjoint pre-open subsets. A space X is called an *almost pre-normal* space [8] if any two disjoint closed subsets A and B of X, one of which is closed domain, can be separated by two disjoint pre-open subsets. A space X is called a mildly pre-normal space [8] if any pair of disjoint closed domain subsets A and B of X, can be separated by two disjoint pre-open subsets. A space X is said to be a *partially normal* space [10] if any pair of disjoint closed subsets A and B of X, one of which is π -closed and the other is closed domain, can be separated by two disjoint open subsets. A space X is said to be a π *pre-normal* (or πp -normal) space [11] if any pair of disjoint closed subsets A and B of X, one of which is π -closed, can be separated by two disjoint pre-open subsets. A complement of a pre-open (resp. semi open, α -open) set is called pre-closed (resp. semi closed, α -closed). An intersection of all pre-closed sets containing A is called *pre-closure* of A [12] and denoted by p cl(A). A pre-interior of A denoted by p int(A), is defined to be the union of all pre-open sets contained in A.

In this paper, we study a new weaker version of pre-normality called partial prenormality. We show that partial pre-normality is both an additive and a topological property, and it is a hereditary property only with respect to closed domain subspaces. Some properties, examples, characterizations and preservation theorems of partial pre-normality are presented in this work.

2. Definition and Examples

First, we give the definition of partial pre-normality.

Definition 2.1 A space X is said to be a *partially pre-normal* space if for every pair of disjoint closed subsets A and B of X, one of which is π -closed and the other is closed domain, there exist disjoint pre-open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

It can be observed that every partially normal space is partially pre-normal because every open set is pre-open, and we conclude:

pre-normal \Rightarrow almost pre-normal \Rightarrow partially pre-normal \Rightarrow mildly pre-normal

pre-normal \Rightarrow quasi pre-normal \Rightarrow partially pre-normal \Rightarrow mildly pre-normal

Some counterexamples will be given in this paper to show that none of the above implications is reversible. First, we need to recall the following definition:

Definition 2.2 A space X is called a *sub-maximal* space [13,14] if every dense subset of X is an open subset.

Note that: every pre-open subset in a sub-maximal space X is an open subset. The following facts have been presented in [15] (Chapter 7).

Lemma 2.3 Let *X* be a space and *D* be a dense subset of *X*, then::

- 1. D is pre-open set in X.
- 2. for any subset A of X, we have $A \cup D$ is a pre-open subset.
- 3. for any closed subset A of X, we have $D \setminus A$ is a pre-open subset.
- 4. if *A* and *B* are disjoint closed subsets of *X*, then $(D \setminus A) \cup B$ and $(D \setminus B) \cup A$ are pre-open.
- 5. if *X* has two disjoint dense subsets, then *X* is pre-normal space.

Since every pre-open subset in a sub-maximal space is an open subset, we get:

Lemma 2.4 Every partially pre-normal sub-maximal space is partially normal.

Here is an example of a mildly pre-normal space but not partially pre-normal.

Example 2.5 The irregular lattice topology, Example 79 in [16]:

Let $X = \{(i, k): i, k \in \mathbb{Z}, i, k > 0\} \cup \{(i, 0); i \ge 0\}$ be the subset of the integral lattice points of the plane. The irregular lattice topology on X is Urysohn, σ -compact, Lindelöf, second countable, not semi regular and has σ -locally finite base [16]. It is easy to show that the irregular lattice topology is a sub-maximal space because any dense subset of X is an open subset. Hence, every pre-open set in X is an open subset. The irregular lattice topology is a mildly normal space but not partially normal [10]. Thus, it is a mildly pre-normal space. Since X is submaximal non partially normal, by the Lemma 2.4 we obtain X is not partially pre-normal space.

The following is an example of a partially pre-normal space but not almost pre-normal.

Example 2.6 The countable complement extension topology, Example 63 in [16]:

Let $X = \mathbb{R}$ and let $\mathcal{T}_1 = \mathcal{U}$ the Euclidean topology on \mathbb{R} . Let $\mathcal{T}_2 = \mathcal{CC}$ the co-countable topology on \mathbb{R} . Define \mathcal{T} to be the smallest topology generated by $\mathcal{T}_1 \cup \mathcal{T}_2$, which is called a *countable complement extension* topology on X [16]. In this space, the only open domain (closed domain, π -open, π -closed) sets in (X, \mathcal{T}) are those which are open domain (closed domain, π -open, π closed) in $(\mathbb{R}, \mathcal{U})$, where \mathcal{U} is the Euclidean topology on \mathbb{R} . It can be observed that: (X, \mathcal{T}) is almost regular, Lindelöf, not almost normal, not semi-regular and \mathbb{P} is open. For more information about this space, see [15, 16]. Note that: in the countable complement extension topology, we have \mathbb{P} is dense open subspace and any uncountable subset of \mathbb{P} whose complement is countable, is also open set in X. Thus, we can easily show that any dense subset of X is an open set in X. Therefore, X is a sub-maximal space. Hence, every pre-open subset of X is a quasi-normal space and hence partially normal. Therefore, the countable complement extension topology is a partially pre-normal space. Since X is sub-maximal non almost normal space, we obtain that X is not almost pre-normal. Hence, the countable complement extension topology is an example of a partially pre-normal space but not almost pre-normal.

Every partially normal space is partially pre-normal but the converse is not true in general as shown by the following example:

Example 2..7 Consider the product space $X = (\omega_0 + 1) \times [-1,1]$, where ω_0 is the first countable ordinal. Let $p = (\omega_0, 0) \in X$, define a topology on X by adding to the product

topology of *X*, the basic open set of *p* which is the form $U_n(p) = \{p\} \cup ((\alpha, \omega_0] \times (0, \frac{1}{n})), n \in \mathbb{N}, \alpha < \omega_0$. Now, we show that *X* is partially pre-normal but not partially normal. To prove the space *X* is partially pre-normal, let *A* be π -closed and *B* be closed domain sets in *X* such that $A \cap B = \emptyset$. Let $G = \omega_0 + 1 \times ((-1,1) \cap \mathbb{Q})$ and $H = \omega_0 + 1 \times ((-1,1) \cap \mathbb{P})$. Then, *G* and *H* are disjoint dense subsets of *X*. Let $U = G \cup A$ and $V = H \cup B$. By the Lemma 2.3, we have *U* and *V* are disjoint pre-open sets in *X* such that $A \subseteq U$ and $B \subseteq V$. Thus, *A* and *B* can be separated by two disjoint pre-open subsets. Hence, *X* is partially pre-normal. Now, we show that *X* is not partially normal. Let $U = \{1,3,5,\ldots\} \times [-1,0)$ and $V = \{0,2,4,6,\ldots\} \times (0,1]$. Then, *U* and *V* are open sets in *X* such that $\overline{U} = (U \cup \{\omega_0\}) \times [-1,0] \setminus \{(\omega_0,0)\}$ and $\overline{V} = (V \cup \{\omega_0\}) \times [0,1]$. Let $E = \overline{U}$ and $F = \overline{V}$. Then, *E* and *F* are disjoint closed domain sets in *X*. But *E* and *F* can not be separated by two disjoint open subsets. Hence, *X* is not mildly normal space and hence not partially normal. Therefore, the space *X* is an example of a partially pre-normal space but not partially normal.

The following example is a partially pre-normal space but not pre-normal.

Example 2.8 Consider the topology $\mathcal{T} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ on the set $X = \{a, b, c\}$. Then, X is almost pre-normal [11]. Hence, it is partially pre-normal. But X is not pre-normal because the sets $\{b\}$ and $\{c\}$ are disjoint closed subsets of X and they can not be separated by two disjoint pre-open subsets. So, (X, \mathcal{T}) is an example of a partially pre-normal space but not pre-normal.

Example 2.9 The simplified arens square topology, Example 81 in [16], is Hausdorff, not completely Hausdorff (not Urysohn), semi regular, not regular, not normal, Lindelöf, σ -compact and with σ -locally finite base [16]. Since X is semi regular and not regular space, we get X is not almost regular. Since X is T_1 and not almost regular space, we have X is not almost normal. But X is quasi normal space [18]. Thus, it is a partially normal space and hence partially pre-normal. Since S is an open dense subspace of X, the sets $C = S \cap \mathbb{Q}$ and $D = S \cap \mathbb{P}$ are disjoint dense subsets of X. Therefore, X is a pre-normal space. Therefore, the simplified arens square topology is an example of a partially pre-normal space but not almost regular. Note that X is a pre-regular space but not regular.

3. Characterizations of Partial Pre-normality

Now, we give some characterizations of partial pre-normality.

Theorem 3.1 For a space *X*, the following statements are equivalent:

(a). *X* is partially pre-normal.

(b). for every pair of open sets U and V, one of which is open domain and the other is π -open whose union is X, there exist pre-closed subsets G and H of X such that $G \subseteq U, H \subseteq V$ and $G \cup H = X$.

(c). for any π -closed set A and each open domain set B such that $A \subseteq B$, there exists pre-open set U such that $A \subseteq U \subseteq p \ cl(U) \subseteq B$.

(d). for every closed domain set A and each π -open set B such that $A \subseteq B$, there exists a preopen set U such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$.

(e). for every pair of disjoint closed sets A and B of X, one of which is closed domain and the other is π -closed, there exist two pre-open subsets U and V of X such that $A \subseteq U$, $B \subseteq V$ and $p cl(U) \cap p cl(V) = \emptyset$.

Proof. (*a*) \Rightarrow (*b*). Let *U* be an open domain subset and *V* be a π -open subset of a partially prenormal space *X* such that $U \cup V = X$. Then, $X \setminus U$ and $X \setminus V$ are disjoint, where $X \setminus U$ is closed domain and $X \setminus V$ is π -closed. By partial pre-normality of *X*, there exist disjoint pre-open subsets U_1 and V_1 of *X* such that $X \setminus U \subseteq U_1$ and $X \setminus V \subseteq V_1$. Let $G = X \setminus U_1$ and $H = X \setminus V_1$. Thus, *G* and *H* are pre-closed subsets of *X* such that $G \subseteq U$, $H \subseteq V$ and $G \cup H = X$.

 $(b) \Rightarrow (c)$. Let *A* be a π -closed and *B* be an open domain subset such that $A \subseteq B$. Then, $X \setminus A$ is π -open and *B* is open domain in *X* whose union is *X*. Then by (*b*), there exist pre-closed sets *G* and *H* such that $G \subseteq X \setminus A$, $H \subseteq B$ and $G \cup H = X$. So, $A \subseteq X \setminus G$, $X \setminus B \subseteq X \setminus H$ and $(X \setminus G) \cap (X \setminus H) = \emptyset$. Let $U = X \setminus G$ and $V = X \setminus H$. Then, *U* and *V* are disjoint pre-open sets such that $A \subseteq U \subseteq X \setminus V \subseteq B$. Since $X \setminus V$ is pre-closed, we have $p cl(U) \subseteq X \setminus V$. Thus, $A \subseteq U \subseteq p cl(U) \subseteq B$.

 $(c) \Rightarrow (d)$. Let *A* be closed domain and *B* be π -open sets in *X* such that $A \subseteq B$. Then, $X \setminus B \subseteq X \setminus A$, where $X \setminus B$ is π -closed and $X \setminus A$ is open domain. By (c), there exists a pre-open set *V* such that $X \setminus B \subseteq V \subseteq p$ cl(*V*) $\subseteq X \setminus A$. This implies that $A \subseteq X \setminus p$ cl(*V*) $\subseteq X \setminus V \subseteq B$. Put $U = X \setminus p$ cl(*V*). Then, *U* is a pre-open set in *X* such that $A \subseteq U \subseteq p$ cl(*U*) $\subseteq B$.

 $(d) \Rightarrow (e)$. Let *A* and *B* be any disjoint closed sets such that *A* is closed domain and *B* is π closed. Then, $A \subseteq X \setminus B$, where $X \setminus B$ is π -open. By (*d*), there exists a pre-open subset *U* of *X* such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq X \setminus B$. Thus, we have $B \subseteq X \setminus p \operatorname{cl}(U)$. Let $V = X \setminus p \operatorname{cl}(U)$. Thus, *V* is a pre-open subset of *X*. Therefore, there exist two pre-open subsets *U* and *V* such that $A \subseteq$ $U, B \subseteq V$ and $p \operatorname{cl}(U) \cap p \operatorname{cl}(V) = \emptyset$. $(e) \Rightarrow (a)$. It is obvious.

4. Partial Pre-normality in Subjects

The following two lemmas have been presented in [11, 15, 19].

Lemma 4.1 Let $f: X \to Y$ be a function. Then:

1. an image of a pre-open set under an open continuous function is pre-open.

2. an image of a pre-closed set under an onto, open-and-closed (clopen) continuous function is pre-closed.

3. an inverse image of a pre-open (resp. pre-closed, π -open, π -closed) set under an open continuous function is pre-open (resp. pre-closed, π -open, π -closed).

Lemma 4.2 Let *M* be a closed domain (resp. open, dense) subspace of *X* and $A \subseteq X$. If *A* is a pre-open (resp. pre-closed) set in *X*, then $A \cap M$ is a pre-open (resp. pre-closed) set in *M*.

Theorem 4.3 An image of a partially pre-normal space under an open continuous injective function is partially pre-normal.

Proof. Let *X* be a partially pre-normal space and let $f: X \to Y$ be an open continuous injective function. We show that f(X) is partially pre-normal. Let *A* and *B* be any two disjoint closed sets in f(X), one of which is π -closed and the other is closed domain. Since the inverse image of a π -closed (closed domain) set under an open continuous function is π -closed (closed domain), by the Lemma 4.1, we have $f^{-1}(A)$ is π -closed in *X*, $f^{-1}(B)$ is closed domain in *X* and $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. By partial pre-normality of *X*, there exist two pre-open subsets *U* and *V* of *X* such that $f^{-1}(A) \subseteq U$, $f^{-1}(B) \subseteq V$ and $U \cap V = \emptyset$. Since *f* is an open continuous injective function, we have $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \emptyset$. By the Lemma 4.1, we obtain f(U) and f(V) are disjoint pre-open sets in f(X) such that $A \subseteq f(U)$ and $B \subseteq f(V)$. Hence, f(X) is partially pre-normal.

From the Theorem 4.3, we obtain:

Corollary 4.4 Partial pre-normality is a topological property.

Theorem 4.5 Partial pre-normality is a hereditary property with respect to closed domain subspaces.

Proof. Let *M* be a closed domain subspace of a partially pre-normal space *X*. Let *A* and *B* be any disjoint closed sets such that *A* is π -closed and *B* is closed domain in *M*. Since *M* is a closed domain subspace of *X*, we have *A* and *B* are disjoint closed subsets of *X*, where *A* is π -closed and *B* is closed domain. By partial pre-normality of *X*, there exist two disjoint pre-open subsets *U* and *V* of *X* such that $A \subseteq U$ and $B \subseteq V$. By the Lemma 4.2, we obtain $U \cap M$ and $V \cap M$ are disjoint pre-open sets in *M* such that $A \subseteq U \cap M$ and $B \subseteq V \cap M$. Hence, *M* is partially pre-normal.

Since every closed-and-open (clopen) subset is closed domain, we have:

Corollary 4.6 Partial pre-normality is a hereditary property with respect to clopen subspaces.

5. Relationships of Partial Pre-normality

In this section, we present some relationships between partial pre-normality and almost pre-regularity. First, we recall the following definitions:

Definition 5.1 A space X is called an *almost pre-regular* space if for each closed domain set F and each $x \notin F$, there exist disjoint pre-open sets U and V such that $x \in U$ and $F \subseteq V$ [6,12].

Definition 5.2 A space X is called a *weakly pre-regular* space [8] if for each $x \in X$ and for each open domain subset U of X such that $x \in U$, there exists a pre-open subset V of X such that $x \in V \subseteq p \operatorname{cl}(V) \subseteq U$.

Partial pre-normality does not imply to almost pre-regularity in general as shown by the following example.

Example 5.3 Consider the topology $\mathcal{T} = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ on the set $X = \{a, b, c\}$ [11], we have X is pre-normal and hence partially pre-normal space. But X is not almost pre-regular because the closed domain $\{a, c\}$ does not contain the point b, and they do not exist two disjoint

pre-open subsets containing them. So, (X, \mathcal{T}) is an example of a partially pre-normal space but not almost pre-regular.

Definition 5.4 A space X is called a p_1 -paracompact space [6,20] if every pre-open cover of X has a locally finite pre-open refinement.

Clearly, every p_1 -paracompact space is nearly paracompact. The following result is analogous to the Theorem 5.5 in [8].

Theorem 5.5 Every weakly pre-regular p_1 -paracompact space is partially pre-normal.

Proof. Let X be a weakly pre-regular p_1 -paracompact space. Since X is p_1 -paracompact, it is sub-maximal and nearly paracompact, Theorem 1 in [21]. Since X is a sub-maximal and a weakly pre-regular space, it is weakly regular. In view of that fact that every weakly regular nearly paracompact space is π -normal [15], we obtain X is partially normal. Hence, X is partially pre-normal.

Since every almost pre-regular space is weakly pre-regular, we get:

Corollary 5.6 Every almost pre-regular p_1 -paracompact space is partially pre-normal.

It can be observed that: partial pre-normality does not imply to almost regularity and vise versa. The simplified arens square topology, Example 2.9 is a partially normal T_1 -space but not almost regular. Thus, it is partially pre-normal T_1 -space but not almost regular.

Theorem 5.7 Every partially pre-normal T_1 -space in which every singleton $\{x\}$ is π -closed is almost pre-regular.

Proof. It is obvious.

6. Properties of Partial Pre-normality

Now, we present the following result which is in [15].

Corollary 6.1 If $A \subseteq X = \bigoplus_{s \in S} X_s$ is π -open (resp. π -closed) in X, then $A \cap X_s$ is π -open (resp. π -closed) in X_s for each $s \in S$.

Theorem 6.2 The sum $X = \bigoplus_{s \in S} X_s$, $X_s \neq \emptyset \forall s \in S$ is partially pre-normal if and only if each X_s is partially pre-normal for each $s \in S$.

Proof. Let $X = \bigoplus_{s \in S} X_s$ be a partially pre-normal space. Since X_s is a clopen subset of X, by the Corollary 4.6 we have X_s is a partially pre-normal subspace of X for each $s \in S$. Conversely, suppose that X_s is partially pre-normal for each $s \in S$. We show that X is partially pre-normal. Let A and B be any two disjoint closed subsets of X such that A is π -closed and B is closed domain. Thus, we have $A \cap X_s$ is π -closed and $B \cap X_s$ is closed domain in X_s for each s. Since $A \cap B = \emptyset$, we have $(A \cap X_s) \cap (B \cap X_s) = \emptyset$. Since X_s is partially pre-normal for each s, there exist pre-open sets U_s and V_s in X_s such that $A \cap X_s \subseteq U_s$, $B \cap X_s \subseteq V_s$ and $U_s \cap V_s = \emptyset$. Now, since $\{X_s : s \in S\}$ is a family of pairwise disjoint topological spaces, we get $A = \bigcup_{s \in S} (A \cap X_s) \subseteq \bigcup_{s \in S} V_s = U$, $B = \bigcup_{s \in S} (B \cap X_s) \subseteq \bigcup_{s \in S} V_s = V$ and $U \cap V = (\bigcup_{s \in S} U_s) \cap (\bigcup_{s \in S} V_s) = \bigcup_{s \in S} (U_s \cap V_s) = \emptyset$. Thus, U and V are disjoint pre-open sets in X such that $A \subseteq U$ and $B \subseteq V$. Therefore, X is partially pre-normal.

Corollary 6.3 Partial pre-normality is an additive property.

It is well known that, a finite product of pre-open (pre-closed) sets is pre-open (pre-closed) [15]. So, we get:

Theorem 6.4 Let (X_i, \mathcal{T}_i) be a space, i = 1, 2, 3, ..., n. If $X = \prod_{i=1}^n X_i$ is partially pre-normal, then (X_i, \mathcal{T}_i) is partially pre-normal for each i = 1, 2, 3, ..., n.

Proof. Let $X = \prod_{i=1}^{n} X_i$ be partially pre-normal. Let $m \in \{1, 2, 3, ..., n\}$ be arbitrary. Let *A* and *B* be any two disjoint closed sets in X_m , where *A* is π -closed and *B* is closed domain. Let $\pi_m: \prod_{i=1}^{n} X_i \to X_m$ be the natural projection map from *X* onto X_m . Now, $\pi_m^{-1}(A) = \prod_{i=1}^{n} W_i$, (where $W_i = X_i$ for each $i \neq m$) is π -closed in X, $\pi_m^{-1}(B) = \prod_{i=1}^{n} V_i$, (where $V_i = X_i$ for each $i \neq m$) is closed domain in *X* and $\pi_m^{-1}(A) \cap \pi_m^{-1}(B) = \emptyset$. Since *X* is partially pre-normal, there exist two disjoint pre-open sets *U* and *V* in *X* such that $\pi_m^{-1}(A) \subseteq U$ and $\pi_m^{-1}(B) \subseteq V$. Since π_m is an open onto continuous function, by the Lemma 4.1 $\pi_m(U)$ and $\pi_m(V)$ are disjoint pre-open subsets of X_m such that $A \subseteq \pi_m(U)$ and $B \subseteq \pi_m(V)$. Hence, X_m is partially prenormal. Since *m* was arbitrary, we get (X_i, T_i) is partially pre-normal for each $i \in \{1, 2, 3, ..., n\}$.

7. Other Characterizations of Partial Pre-normality

Now, we need to recall the following definitions.

Definition 7.1 A subset *A* of a space *X* is called:

1. *g-closed* (resp. *g-open*) [21] if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open (resp. if $F \subseteq int(A)$ whenever $F \subseteq A$ and F is closed).

2. g^* -closed (resp. g^* -open) [22], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is g-open (resp. if $F \subseteq int(A)$ whenever $F \subseteq A$ and F is g-closed).

3. πg -closed (resp. πg -open) [23] if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is π -open (resp. if $F \subseteq int(A)$ whenever $F \subseteq A$ and F is π -closed).

4. *gp-closed* (resp. *gp-open*) [24] if $p \ cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open (resp. if $F \subseteq p \ int(A)$, whenever $F \subseteq A$ and F is closed).

5. g^*p -closed (resp. g^*p -open) [25] if $p \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open (resp. if $F \subseteq p$ int(A), whenever $F \subseteq A$ and F is g-closed).

6. πgp -closed (resp. πgp -open) [26] if $p \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open (resp. if $F \subseteq p$ int(A), whenever $F \subseteq A$ and F is π -closed).

7. rgp-closed (resp. rgp-open) [14] if and only if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open domain (resp. if and only if $F \subseteq p$ int(A), whenever $F \subseteq A$ and F is a closed domain).

From the Definition 7.1, we have:

 $closed \Rightarrow g^*\text{-}closed \Rightarrow g\text{-}closed \Rightarrow \pi g\text{-}closed \Rightarrow rg\text{-}closed$

closed \Rightarrow pre-closed \Rightarrow g^*p -closed \Rightarrow gp-closed \Rightarrow πgp -closed \Rightarrow rgp-closed

The following theorem gives some other characterizations of partial pre-normality.

Theorem 7.2 For a space *X*, the following are equivalent:

(a). *X* is partially pre-normal.

(b). for each π -closed set A and each closed domain set B such that $A \cap B = \emptyset$, there exist disjoint g^*p -open (resp. gp-open, πgp -open, rgp-open) subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

(c). for any π -closed set A and any open domain set B with $A \subseteq B$, there exists a g^*p -open (resp. gp-open, πgp -open, rgp-open) subset V of X such that $A \subseteq V \subseteq p$ $cl(V) \subseteq B$.

(d). for any closed domain set A and each π -open set B with $A \subseteq B$, there exists a g^*p -open (resp. gp-open, πgp -open, rgp-open) subset V of X such that $A \subseteq V \subseteq p$ $cl(V) \subseteq B$.

Proof. (*a*) \Rightarrow (*b*). Let *X* be a partially pre-normal space. Let *A* be π -closed and *B* be closed domain such that $A \cap B = \emptyset$. By partial pre-normality of *X*, there exist disjoint pre-open subsets *U* and *V* of *X* such that $A \subseteq U$ and $B \subseteq V$. Thus, *U* and *V* are disjoint g^*p -open (resp. gp-open, πgp -open, rgp-open) subsets of *X* such that $A \subseteq U$ and $B \subseteq V$.

 $(b) \Rightarrow (c)$. Suppose (b) holds. Let A be π -closed and B be an open domain subset of X such that $A \subseteq B$. Then, $A \cap X \setminus B = \emptyset$. Thus, A and $X \setminus B$ are disjoint, where A is π -closed and $X \setminus B$ is closed domain. By (b), there exists disjoint rgp-open subsets U and V of X such that $A \subseteq U$ and $X \setminus B \subseteq V$. Therefore, we have $A \subseteq p$ int(U), $X \setminus B \subseteq p$ int(V) and p int $(U) \cap p$ int $(V) = \emptyset$. Let G = p int(U). Then, G is a pre-open subset of X and hence g^*p -open (resp. gp-open, πgp -open, such that $A \subseteq G \subseteq p$ cl $(G) \subseteq B$.

 $(c) \Rightarrow (d)$. Suppose (c) holds. Let *A* be closed domain and *B* be π -open subsets of *X* such that $A \subseteq B$. Then, $X \setminus B \subseteq X \setminus A$, where $X \setminus B$ is π -closed and $X \setminus A$ is open domain. By (c), there exists πgp -open set *U* such that $X \setminus B \subseteq U \subseteq cl(U) \subseteq X \setminus A$. This implies that $X \setminus B \subseteq pint(U) \subseteq pint(pcl(U) \subseteq pcl(U) \subseteq X \setminus A$. Thus, we have $A \subseteq X \setminus pcl(U) \subseteq X \setminus pint(pcl(U)) \subseteq X \setminus pint(U) \subseteq B$. Put $V = X \setminus pcl(U)$. Then, *V* is pre-open and hence a g^*p -open (resp. gp-open, πgp -open, rgp-open) subset of *X* such that $A \subseteq V \subseteq pcl(V) \subseteq B$.

 $(d) \Longrightarrow (a)$. Suppose (d) holds. Let A be closed domain and B be π -closed such that $A \cap B = \emptyset$. Then, we have $A \subseteq X \setminus B$ where $X \setminus B$ is π -open. By (d), there exists an rgp-open subset V of X such that $A \subseteq V \subseteq p \ cl(V) \subseteq X \setminus B$. Then, we obtain $A \subseteq p \ int(V) \subseteq V \subseteq p \ cl(V) \subseteq X \setminus B$. Let $G = p \ int(V)$ and $H = X \setminus p \ cl(V)$. Then, G and H are disjoint pre-open subsets of X such that $A \subseteq G$ and $B \subseteq H$. Hence, X is partially pre-normal.

8. Preservation Theorems on Partial Pre-normality

In this section, we present some preservation theorems of partial pre-normality. First, recall the following definitions:

Definition 8.1 A function $f: X \rightarrow Y$ is said to be:

1. *rc-continuous* [27] if $f^{-1}(F)$ is closed domain in X for each closed domain F of Y.

2. π -continuous [23,28] if $f^{-1}(F)$ is π -closed in X for each closed F of Y.

3. weakly open [14] if for each open subset U of X, $f(U) \subseteq int(f(\overline{U}))$.

4. *R-map* [14,23] if $f^{-1}(V)$ is open domain in X for every open domain set V of Y.

5. almost pre-irresolute [29] if for each $x \in X$ and each pre-neighborhood V of f(x) in Y, $p \operatorname{cl}(f^{-1}(V))$ is a pre-neighborhood of x in X.

6. *Mp-closed* (resp. *Mp-open*) [6,12,14] if f(U) is pre-closed (resp. pre-open) in Y for each pre-closed (resp. pre-open) U in X.

Lemma 8.2, [14], If $f: X \to Y$ is a weakly open continuous function, then f is Mp-open and R-map.

Clearly, every pre-irresolute function is almost pre-irresolute, and every π -continuous function is continuous. Now, we present the following preservation theorems of partial pre-normality.

Theorem 8.3 If $: X \to Y$ is an *Mp*-open *rc*-continuous and almost pre-irresolute surjection function from a partially pre-normal space *X* onto a space *Y*, then *Y* is partially pre-normal.

Proof. Let A be a π -closed and B be an open domain subsets of Y such that $A \subseteq B$. Then by rc-continuity of f, $f^{-1}(A)$ is π -closed and $f^{-1}(B)$ is open domain subsets of X such that $f^{-1}(A) \subseteq f^{-1}(B)$. Since X is partially pre-normal, by the Theorem 3.1, there exists a pre-open subset V of X such that $f^{-1}(A) \subseteq V \subseteq p \ cl(V) \subseteq f^{-1}(B)$. Since f is Mp-open and almost pre-irresolute surjection, it follows that f(V) is a pre-open subset of Y and $A \subseteq f(V) \subseteq p \ cl(f(V)) \subseteq B$. By the Theorem 3.1, we obtain Y is partially pre-normal.

Theorem 8.4 If : $X \to Y$ is an *Mp*-open, open, π -continuous and almost pre-irresolute function from a partially pre-normal space *X* onto a space *Y*, then *Y* is partially pre-normal.

Proof. Let *A* be π -closed in *Y* and *B* be open domain in *Y* such that $A \subseteq B$. By π -continuity and openness of *f*, $f^{-1}(A)$ is π -closed and $f^{-1}(B)$ is open domain in *X* such that $f^{-1}(A) \subseteq$ $f^{-1}(B)$. By partially pre-normality of *X*, there exists a pre-open set *U* of *X* such that $f^{-1}(A) \subseteq$ $U \subseteq p \operatorname{cl}(U) \subseteq f^{-1}(B)$. Since *f* is *Mp*-open almost pre-irresolute surjection, we obtain $A \subseteq$ $f(U) \subseteq p \, cl(f(U)) \subseteq B$, where f(U) is pre-open in Y. By the Theorem 7.2, we get Y is partially pre-normal.

Theorem 8.5 If : $X \to Y$ is an *Mp*-closed and open π -continuous function from a partially prenormal space *X* onto a space *Y*, then *Y* is partially pre-normal.

Proof. Let *U* and *V* be open subsets of *Y* such that *U* is π -open and *V* is open domain such that $U \cup V = Y$. This implies that $f^{-1}(U) \cup f^{-1}(V) = X$. By openness π -continuity of f, $f^{-1}(U)$ is π -open in *X* and $f^{-1}(V)$ is open domain in *X*. Since *X* is partially pre-normal, by the Theorem 3.1 there exist pre-closed sets *G* and *H* in *X* such that $G \subseteq f^{-1}(U)$, $H \subseteq f^{-1}(V)$ and $G \cup H = X$. Thus, $f(G) \subseteq U$, $f(H) \subseteq V$ and $f(G) \cup f(H) = Y$. Since *f* is an *Mp*-closed function, we have f(G) and f(H) are pre-closed subsets of *Y*. By the Theorem 3.1, we obtain *Y* is partially pre-normal.

Theorem 8.6 If $f: X \to Y$ is an open π -continuous, weakly open surjection and X is partially pre-normal, then Y is partially pre normal.

Proof. Let *A* and *B* be any disjoint closed subsets of *Y* such that *A* is π -closed and *B* is closed domain. Since *f* is an open π -continuous surjection, we have $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint, $f^{-1}(A)$ is π -closed and $f^{-1}(B)$ is closed domain subsets of *X*. Since *X* is partially pre-normal, there exist disjoint pre-open sets *U* and *V* in *X* such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since *f* is a weakly open continuous surjection, by the Lemma 8.2, we have *f* is *Mp*-open and *R*-map. Thus, f(U) and f(V) are disjoint pre-open sets in *Y* such that $A \subseteq f(U)$ and $B \subseteq f(V)$. Hence, *Y* is partially pre-normal.

Theorem 8.7 If $f: X \to Y$ is an *Mp*-open, *rc*-continuous and almost pre-irresolute surjection on a partially pre-normal space X onto a space Y, then Y is partially pre-normal.

Proof. Let *A* be π -closed and *B* be open domain in *Y* such that $A \subseteq B$. By *rc*-continuity of *f*, we obtain $f^{-1}(A)$ is π -closed in *X* and $f^{-1}(B)$ is open domain in *X* such that $f^{-1}(A) \subseteq f^{-1}(B)$. By partial pre-normality of *X*, there exists a pre-open set *U* such that $f^{-1}(A) \subseteq U \subseteq p \ cl(U) \subseteq f^{-1}(B)$. Thus, $f(f^{-1}(A)) \subseteq f(U) \subseteq f(p \ cl(U)) \subseteq f(f^{-1}(B))$. Since *f* is an *Mp*-

open, almost pre-irresolute surjection, we obtain $A \subseteq f(U) \subseteq p$ $cl(f(U)) \subseteq B$, where f(U) is a pre-open subset of *Y*. By the Theorem 3.1, we have *Y* is partially pre-normal.

We can distinguish some other preservation theorems on partial pre-normality similar to those on mild pre-normality, almost pre-normality and quasi pre-normality in [8,11].

Problems: The following problems are still open in this work.

- 1. Is there a T_1 -space X that is a partially pre-normal space but not almost pre-regular?
- 2. Is there an example of a partially pre-normal space but not quasi pre-normal?

9. Conclusions

A new version of pre-normality called partial pre-normality have been studied in this work. We have shown that partial pre-normality is both a topological and an additive property, and it is a hereditary property with respect to closed domain subspaces. We investigate that partial pre-normality is different from the other weaker kinds of pre-normality. Some results, properties, examples, characterizations and preservation theorems of partial pre-normality were presented.

References

- [1] Kuratowski, C. (1958) Topology I, 4th ed. in France, Hafner, New York.
- [2] Zaitsev V. (1968) On certain classes of topological spaces and their bicompactifications. Doklady Akademii Nauk SSSR 178: 778–779.
- [3] Dugundji, J. (1992) Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue.
- [4] Engelking, R. (1989) General Topology, vol. 6. Berlin: Heldermann (Sigma series in pure mathematics), Poland.
- [5] Patty, C. (1993) Foundation of topology, PWS-KENT Publishing Company, Boston.
- [6] Mashhour A. S., El-Monsef M. E. A. and Hasanein I. A. (1984) On pretopological spaces. Bulletin Mathématique de la Société des Scinces Mathématiques de la République Socialiste de Roumanie 28 (76): 39–45
- [7] Crossley S. G. and Hildebrand S. K. (1970) Semiclosure. Texas Journal of Science 22: 99–112
- [8] Navalagi G. B. (2000) p-normal, almost p-normal and mildly p-normal spaces. Topology Atlas Preprint \$
 427

- [9] Paul and Bhattacharyya (1995) on *p*-normal spaces. Soochow Journal of Mathematics 21 (3): 273–289
- [10] Alshammari I., Kalantan L. and Thabit S. A. (2019) Partial normality. Journal of Mathematical Analysis 10:
 1–8
- [11] Thabit S. A. S., and Kamaruhaili H. (2012) πp -normal topological spaces. Int. Journal of Math. Analysis **6** (21): 1023–1033.
- [12] Mashhour A. S., El-Monsef M .E .A. and El-Deeb S. N. (1982) On precontinuous and weak precontinuous mappings. Proceedings of the Mathematical and Physical Society of Egypt 53: 47–53.
- [13] Bourbaki N. (1951) Topologie general, Paris: Actualites Sci. Ind., nos. Hermann pp. 858–1142.
- [14] Park J. H. (2003) Almost p-normal, mildly p-normal spaces and some functions. Chaos, Solitions and Fractals 18: 267–274.
- [15] Thabit, S. A. S. (2013) π -Normality in topological spaces and its generalization. Ph.D Thesis, School of Mathematical Sciences, Universiti Sains Malaysia, USM, Malaysia.
- [16] Steen, A. L. and Seebach, J. A. (1995) Counterexamples in Topology., Dover Publications, INC., New York.
- [17] Lal S. and Rahman M. S. (1990) A note of quasi-normal spaces. Indian Journal of Mathematics 32 (1): 87–94.
- [18] Thabit S. A., Alshammari I. and Alqurashi W. (2021) Epi-quasi normality. Open Mathematics (De Gruyter Open Access), 19: 1755-1770.
- [19] Thabit S. A. S. and Kamaruhaili H. (2011) π-closed sets and almost normality of the niemytzki plane topology.
 J. Math. Sci. Adv. Appl. 8 (2): 73–85
- [20] Ganster M., Jafari S. and Navalagi G.B. (2002) On semi-g-regular and semi-g-normal spaces. Demonstratio Mathematicae 35 (2): 415–421
- [21] Levine N. (1970) Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo 19: 89–96.
- [22] Sundaram P. and John M. S. (2000) on w-closed sets in topology. Acta Ciencia Indica 4: 389–392.
- [23] Dontchev J. and Noiri T. (2000) Quasi- normal spaces and πg -closed sets. Acta Mathematica Hungarica **89** (3): 211–219.
- [24] Maki H., Umbehara J. and Noiri T. (1996) Every topological space is pre-t₁/2. Memoirs of the Faculty of Science Kochi University Series A (Mathematics) 17: 33–42
- [25] Veerakumar M.K. R. S. (2002) g*-preclosed sets. Acta Ciencia Indica XXVIIIM (1): 51–60.
- [26] Sarsak M. S. and Rajesh N. (2010) π -generalized semi-preclosed sets. International Mathematical Forum 5 (12): 573–578.
- [27] Janković D. S. (1985) A note on mappings of extremally disconnected spaces. Acta Mathematica Hungarica
 46 (1-2): 83–92.
- [28] Aslim A., Guler A. G. and Noiri T. (2006) On πgs -closed sets in topological spaces. Acta Mathematica Hungarica, P.T.1 **112** (4): 275–283.
- [29] El-Deeb S. N., Hasanein I. A., Mashhour A. S. and Noiri T. (1983) On *p*-regular spaces. Bull. Math. Soc. Sci. Math. R.S.R. 27(75) (4): 311–315.