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Abstract 
In this work, we introduce and study in the second part a new concept (the main result), which is called a group action on an 𝑅 −module; in the third part, the 

group action on a ring 𝑅 as 𝑅-module; and in the fourth part, the relation between the 𝐺-module and the group action on it. We give examples, properties, 

propositions, theorems, and corollaries about them. 
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1. Introduction 

Throughout this work, all rings are commutative, with unit only in 

specific places we will mention it; all modules are unitary, all group 

actions on an 𝑅-module are left and all groups are not necessary 

commutative.  

In [5], the concept of a group action on a set 𝑋 was introduced and 

studied and it was defined as follows: Let 𝐺 be a group and 𝑋 be a set. 𝐺 is 

called a group action on a set 𝑋 if there is a map 𝑓: 𝐺 × 𝑋 ⟶ 𝑋 is defined 

by 𝑓(𝛼, 𝑥) = 𝛼𝑥, which satisfies the two axioms: 𝑓(1𝐺 , 𝑥) = 1𝐺𝑥 = 𝑥 and 

𝑓(𝛼, 𝑥) = 𝛼𝑥, ∀𝛼 ∈ 𝐺, ∀𝑥 ∈ 𝑋 . In this work, in the second part, we 

introduce and study the main result, which is called a left group action on 

an 𝑅-module. It is defined as follows: Let (𝐺,⋅) be a group that is not 

necessary commutative and let 𝑅 be a commutative ring. 𝐺 is called a 

group action on an 𝑅-module 𝑀 if there exist an 𝑅-module 𝑀 such that 

𝑓: 𝐺 × 𝑀 ⟶ 𝑀  is defined by 𝑓(𝛽, 𝑥) = 𝛽𝑥  and satisfies the following 

axioms: 𝑓(1𝐺, 𝑥) = 1𝐺𝑥 = 𝑥 , 𝑓(𝛽, 𝛼𝑥) = 𝛽(𝛼𝑥) = (𝛽 ⋅ 𝛼)𝑥  and 𝑓(𝛽, 𝑥 +

𝑦) = 𝛽(𝑥 + 𝑦) = 𝛽𝑥 + 𝛽𝑦, ∀𝛽, 𝛼 ∈ 𝐺, ∀𝑥, 𝑦 ∈ 𝑀. In this case the concept of 

a group action on a set 𝑋.that is meaning the concept of a group action on a 

set 𝑋 a generalization of our concept.  In 2.5, we give the characterization 

of group action on an 𝑅-module. 𝐺 is a group action on an 𝑅-module 𝑀 if 

and only if there is 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 is defined by 𝑓(𝛽, 𝑥) = 𝛽𝑥 and satisfies 

the axioms in 2.1. We introduce and study some properties, where 2.7, is 

proved that 𝐺 is a group action on a ring 𝑅 as 𝑅-module if and only if 𝐺 is a 

group action on an 𝑅-module 𝑀. In 2.9, if 𝐺 is a group action on an 𝑅-

module 𝑀, then every subgroup of 𝐺 is also a group action on an 𝑅-module 

𝑀. In 2.8, we clarify some examples as applications of the definition in 2.1. 

In 2.14, we proved that if 𝐺 is a group action on 𝑅-module 𝑀, then 𝐺 is a 

group action on every submodule of 𝑀. In 2.12, explained that if 𝐺1 and 𝐺2 

are subgroups actions on an 𝑅-module 𝑀, then 𝐺1 ∩ 𝐺2 is also group action 

on an 𝑅-module 𝑀. In 2.17, we generalized the result in 2.12, as in 2.13. In 

2.18, we proved that if 𝐺 is a group action on an 𝑅- module 𝑀1 and an 𝑅-

module 𝑀2 , hence 𝐺  is group action on 𝑀1 + 𝑀2  and in 2.22, we 

generalized it. In 2.24, it is proved that if 𝑅𝑖 , 𝑖 = 1,2 are rings and 𝑅𝑖-

modules 𝑀𝑖 , 𝑖 = 1,2. If 𝐺𝑖 are group actions on 𝑅𝑖-modules 𝑀𝑖, 𝑖 = 1,2, then 

𝐺1 × 𝐺2 is a group action on the 𝑅1 × 𝑅2 -module 𝑀1 × 𝑀2. In 2.25, we 

generalized it. 

In 2.26, it is proved that if 𝑓: 𝐺1 ⟶ 𝐺2 is a group homomorphism. 

Suppose that 𝐺2 is a group action on an 𝑅-module 𝑀 and 𝑓 is injective, 

then 𝐺1 is a group action on an 𝑅-module 𝑀. 

Finally, let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on a ring 𝑅, if 𝑀 is finitely generated 𝑅-module 2.31, Neotherian, 

2.33, cyclic, 2.36, a simple, 3.7, free, 2.40 𝑅-modules, then 𝐺 is a group 

action on every one of them. 

In the part three, we introduce and study the group action on a ring 

𝑅 as 𝑅-module such that 2.6, if 𝑅 is a ring, 𝐺 is called a group action on a 

ring 𝑅 if it is a group action on a ring 𝑅 as an 𝑅-module. 3.2, is proved that 

𝐺 is a group action on a ring 𝑅 if and only if every subgroup of 𝐺 is a group 

action on 𝑅 as 𝑅-module. 3.3, is proved that if 𝐺 is a group action on a ring 

𝑅, then 𝐺 is a group action on every ideal of a ring 𝑅. 3.4, is proved that if 𝐺 

is a group action on a ring 𝑅, then 𝐺 is a group action on 𝑅-module 𝑅/𝐽. In 

3.5, let 𝑅 be a ring and 𝐼 and 𝐽 are ideals of a ring 𝑅, then we have the 

following cases: 𝐺  is a group action on 𝐼 ∩ 𝐽  as 𝑅 -module, 𝐼 + 𝐽  as 𝑅 -

module and 𝐼 × 𝐽 as 𝑅-module. 3.5, is proved that 𝐺 is a group action on 𝐼 

and 𝐽 as 𝑅- modules that is equivalent that 𝐺 is a group action on 𝐼 ⊕ 𝐽 as 

𝑅-module. In 3.6, we generalize the theorem in 3.5. In 3.7, and 3.8, we 

study if 𝑅 is a PID ring and 𝐼 is a maximal or a prime ideal of a ring 𝑅 and 𝐺 

is a group action on a ring 𝑅, then 𝐺 is a group action on 𝑅/𝐼 as an 𝑅-

module. 

In part four, we introduce and study an abelian group on the group 

𝐺 with the operation " ⋅ " which is called a 𝐺-module and is defined as: Let 

𝐺 be a group. A G-module consists of an abelian group 𝑀 together with a 

group action 𝑓: 𝐺 × 𝑀 ⟶ 𝑀  is defined by 𝑓(𝑔, 𝑚) = 𝑔𝑚 , then 𝑔(𝑚1 +

𝑚2) = 𝑔𝑚1 + 𝑔𝑚2, [4]. In 4.2, A G-module can is turned into a right 𝐺-

module 𝑀, where 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 is defined by 𝑓(𝑔, 𝑚) = 𝑚𝑔 = 𝑔−1𝑚. We 

have 𝑔−1(𝑚1 + 𝑚2) = 𝑔−1𝑚1 + 𝑔−1𝑚2 , [4]. In 4.3, we defined 𝐺 -

submodule and proved that 𝐺 is a group action on every 𝐺-submodule of 

𝐺-module. 
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In 4.5, we give the characterization of 𝐺-module where 𝑀 is an 

abelian group and 𝐺  is a group with the operation " ⋅ " , then 𝑀  is 

𝐺 −module if and only if 𝐺 is a group action on 𝑀, and proved it. In 4.6, we 

give examples about 𝐺-module 4.7, is proved if (𝐺, ⋅) is a group and 

(𝐴, 𝐵, 𝐶) are 𝐺-modules, then we have the following cases: 𝐺 is a group 

action on 𝐴 and 𝐶 if and only if 𝐺 is a group action on 𝐵 and 𝐺 is a group 

action on 𝐴 ⊕ 𝐶 if and only if 𝐺 is a group action on 𝐴 and 𝐶. 

Finally, in 4.4, we define the homomorphism of 𝐺 −module and the kernal, 

the image of 𝐺 −homomorphism module and in 4.8, we proved that 𝐺 is 

the group actions on 𝐾𝑒𝑟(𝑓) and 𝐼𝑚(𝑓). 

2.  A group Action on an 𝑹-module 

In this part we will explain and study the main result, which is called 

a group action on an 𝑅-module and is defined as: 

Definition 2.1: Let (𝐺, ⋅) be a group, not necessary commutative, and 

let 𝑅 be a commutative ring. 𝐺 is called a group action on an 𝑅-module if 

there exists an 𝑅-module 𝑀 such that 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 and is defined by 

𝑓(𝛽, 𝑥) = 𝛽𝑥 and satisfies the following axioms: 

1.  𝑓(1𝐺 , 𝑥) = 1𝐺𝑥 = 𝑥, 

2.  𝑓(𝛽, 𝛼𝑥) = 𝛽(𝛼𝑥) = (𝛽 ⋅ 𝛼)𝑥, 

3.  𝑓(𝛽, 𝑥 + 𝑦) = 𝛽(𝑥 + 𝑦) = 𝛽𝑥 + 𝛽𝑦, ∀𝛽, 𝛼 ∈ 𝐺, ∀𝑥, 𝑦 ∈ 𝑀. 

 

Remarks 2.2: A right group action 𝐺 on an 𝑅-module, if there exist an 𝑅-

module 𝑀 such that 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 is defined by 𝑓(𝛽, 𝑥) = 𝑥𝛽 and satisfies 

the axioms in 2.1. 

 

Definition 2.3: Let 𝐺 be a group action on an 𝑅-module 𝑀. Then 𝐴 is a 

subgroup action of 𝐺 if and only if there is 𝑓: 𝐴 × 𝑀 ⟶ 𝑀 and 𝑓(𝑎, 𝑚) = 𝑎𝑚 

which satisfies ∀𝑎, 𝑏 ∈ 𝐴, then 𝑎𝑏−1 ∈ 𝐴 and also satisfies the axioms in 2.1. 

We introduce another formula of the definition of a group action on 

an 𝑅-module as: 

 

Definition 2.4: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. 𝐺 is called a group 

action on an 𝑅-module 𝑀 if every subgroup of 𝐺 is a group action on an 𝑅-

module 𝑀. 

The following result gives the characterization of group action on an 

𝑅-module.  

 

Lemma 2.5: Let 𝐺 be a group and 𝑀 be an 𝑅-module. 𝐺 is a group action 

on an 𝑅 -module 𝑀  if and only if there is 𝑓: 𝐺 × 𝑀 ⟶ 𝑀  is defined by 

𝑓(𝛽, 𝑥) = 𝛽𝑥 and satisfies the following : 

1.  𝑓(1𝐺 , 𝑥) = 1𝐺𝑥 = 𝑥. 

2.  𝑓(𝛽, (𝛼𝑥)) = 𝛽(𝛼𝑥) = (𝛽 ⋅ 𝛼)𝑥. 

3.  𝑓(𝛽, 𝑥 + 𝑦) = 𝛽(𝑥 + 𝑦) = 𝛽𝑥 + 𝛽𝑦. ∀𝛽, 𝛼 ∈ 𝐺 and ∀𝑥, 𝑦 ∈ 𝑀. 

 

Proof: Assume that 𝐺 is a group action on an 𝑅-module 𝑀. Then by 2.1 

there exists the map 𝑓  is defined from 𝐺 × 𝑀 to an 𝑅-module 𝑀 . i.e, 

𝑓: 𝐺 × 𝑀 ⟶ 𝑀  by 𝑓(𝛼, 𝑥) = 𝛼𝑥  and satisfies : 𝑓(1𝐺 , 𝑥) = 1𝐺𝑥 = 1𝐺(1𝑅 ⋅

𝑥) = (1𝐺 ⋅ 1𝑅)𝑥 = 1𝑅 ⋅ 𝑥 = 𝑥 . 𝑓(𝛼, 𝛽𝑥) = 𝛼(𝛽𝑥) = 𝛼(𝛽(𝑟𝑚)) =

𝛼((𝛽𝑟)𝑚) = 𝛼(𝛽𝑟)𝑚 = (𝛼. 𝛽)𝑟𝑚 = (𝛼𝛽)𝑥  and 𝑓(𝛼, 𝑥 + 𝑦) = 𝛼(𝑥 + 𝑦) =

𝛼(𝑟1𝑚1 + (𝛼𝑟2𝑚2) = (𝛼𝑟1)𝑚1 + (𝛼𝑟2)𝑚2) = 𝛼𝑥 + 𝛼𝑦. 

Conversely, Assume that there is a map 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 is defined by 

𝑓(𝛼, 𝑥) = 𝛼𝑥 and satisfies the axioms in 2.1. Hence, 𝐺 is a group action on 

an 𝑅-module 𝑀. 

 

Definition 2.6: Let 𝑅 be a ring. 𝐺 is called a group action on a ring 𝑅 if it 

is a group action on a ring 𝑅 as an 𝑅-module. 

 

Lemma 2.7: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. 𝐺 is a group action on 

a ring 𝑅 if and only if 𝐺 is a group action on an 𝑅-module 𝑀. 

Proof: Suppose that 𝐺 is a group action on the ring 𝑅. Let 𝑀 be an 𝑅-

module, and one can define the map 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 by 𝑓(𝛼, 𝑥) = 𝛼𝑥 and 

1. 𝑓(1𝐺 , 𝑥) = 1𝐺 . (𝑟𝑚) = (1𝐺 . 𝑟)𝑚 = 𝑟𝑚 = 𝑥, because 𝐺 is a group 

action on 𝑅. 

2. 𝑓(𝛼, 𝛽𝑥) = 𝛼(𝛽(𝑟𝑚)) = 𝛼((𝛽𝑟)𝑚) = (𝛼(𝛼𝑟))𝑚 = (𝛼. 𝛽)𝑟𝑚 =

(𝛼. 𝛽)𝑥. 

3. 𝑓(𝛼, 𝑥 + 𝑦) = 𝛼(𝑟1𝑚1 + 𝑟2𝑚2) = (𝛼𝑟1)𝑚1 + (𝛼𝑟2)𝑚2 =

𝛼(𝑟1𝑚1) + 𝛼(𝑟2𝑚2) = 𝛼𝑥 + 𝛼𝑦 

∀𝑥, 𝑦 ∈ 𝑀, ∀𝛼, 𝛽 ∈ 𝐺 and ∀𝑟1, 𝑟2, 𝑟 ∈ 𝑅. And from 2.1 𝐺 is a group action on 

an R-module 𝑀. Now suppose that 𝐺 is a group action on an R-module 𝑀. 

Then for all 𝛼 ∈ 𝐺 and for all 𝑟 ∈ 𝑅 implies that 𝛼𝑟 ∈ 𝑅. i.e; we can define 

the map 𝑓: 𝐺 × 𝑅 ⟶ 𝑅 by 𝑓(𝛼, 𝑟) = 𝛼𝑟 and this map satisfies the following 

• 𝑓(1𝐺, 𝑟) = 1𝐺 . 𝑟 = 𝑟, 

• 𝑓(𝛼, 𝛽𝑟) = 𝛼(𝛽𝑟) = (𝛼. 𝛽)𝑟, 

• 𝑓(𝛼, 𝑟1 + 𝑟2) = 𝛼(𝑟1 + 𝑟2) = 𝛼𝑟1 + 𝛼𝑟2 , ∀𝛼, 𝛽 ∈ 𝐺  and ∀𝑟1, 𝑟2, 𝑟 ∈ 𝑅 . 𝐺 

is a group action on a ring 𝑅. 

 

Examples 2.8  

1. The group 𝐴 = {1, −1, 𝑖, −𝑖} is a subgroup of the field complex ℂ so it 

is a group action on ℂ that is equivalent that 𝐴 is a group action on the 

vector space 𝕍 on ℂ. 

2. If 𝑀 is an abelian group, then 𝑀 is ℤ-module and 𝐷 = {1, −1} is the 

group of all the inverse elements of ℤ. Then 𝐷 is a group action on ℤ 

that is equivalent to 𝐷 is a group action on ℤ-module 𝑀. 

3. Let 𝐺 be a subgroup of the field ℝ, then 𝐺 is a group action on ℝ that is 

equivalent that 𝐺 is a group action on ℝ as an ℝ- module. 

4. Every vector space is a group action on itself. 

5. The set of all matrices of the order 𝑛 × 𝑛 with entries from ℝ is an 

abelian group denote it by (𝑀𝑛(ℝ), +) and {1, −1} is a group action on 

the ring ℤ as ℤ-module, hence {1, −1} is a group action on a ℤ − 

module (𝑀𝑛(ℝ), +). 

In the following we will study some results on a group 𝐺 as a group 

action on an 𝑅-module 𝑀 and its subgroups. 

 

Proposition 2.9: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑀, if 𝑁 is a subgroup of 𝐺, then it is a group action on 𝑀. 

Proof: Assume that 𝐺 is a group action on an 𝑀. That is equivalent that 

from 2.7, 𝐺 is a group action on an 𝑅. 𝑁 is a subgroup of 𝐺 that implies that 

2.4, 𝑁 is a group action on an 𝑅, hence from 2.7, 𝑁 must be a group action 

on an 𝑅-module 𝑀. 

 

Remark 2.10 

1. One can easily to prove that 𝐺 and {1𝐺} are the trivial subgroups 

actions of 𝐺 on an 𝑅-module 𝑀. 

2. Also we can easily to prove that 𝐺 is a group action on an 𝑅-trivial 

submodule {0𝑀} of an 𝑅- module 𝑀. 

 

Proposition 2.11: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. 𝐺 is a group 

action on 𝑀 if and only if every subgroup of 𝐺 is a group action on 𝑀. 

Proof: Suppose that 𝐺 is a group action on an 𝑅-module 𝑀, then we have 𝐺 

and {1𝐺} are the trivial subgroups of 𝐺. And they are groups actions on 𝑀. 

Now let 𝑁 be a proper subgroup of 𝐺, then 𝑁 is a group action on an 𝑅 

from 2.9, 𝑁 is a group action on an 𝑀. 

Conversely, since every subgroup of 𝐺  including 𝐺  and {1𝐺}  are 

groups actions on 𝑀, hence from 2.4, 𝐺 is a group action on 𝑀. 

 

Proposition 2.12: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a 

group action on 𝑀 and 𝐺1, 𝐺2 are subgroups of 𝐺, then 𝐺1 ∩ 𝐺2 is a group 

action on 𝑀. 

Proof: Suppose that 𝐺1 and 𝐺2 are group actions on 𝑀. 𝐺1 ∩ 𝐺2 is a group 
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action on an 𝑅-module 𝑀 because 𝐺1 ∩ 𝐺2 is a subgroup of 𝐺, then it is a 

group action on an 𝑅 this implies that 2.7, 𝐺1 ∩ 𝐺2 is a group action on an 

𝑅-module 𝑀. 

 

Proposition 2.13: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a 

group action on 𝑅-module 𝑀 , let 𝐺1, 𝐺2, . . . , 𝐺𝑛  be subgroups of 𝐺 , then 

∩𝑖=1
𝑛 𝐺𝑖 is a group action on an 𝑅-module 𝑀. 

Proof: For 𝑛 = 2. Then by 2.12, 𝐺1 ∩ 𝐺2 is a group action on an 𝑅-module 

𝑀. Suppose that the statement is correct for 𝑛, i.e ∩𝑖=1
𝑛 𝐺𝑖 is a group action 

on an 𝑅-module 𝑀. 

We prove that is true for 𝑛 + 1. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛, 𝐺𝑛+1 be subgroups' 

actions of 𝐺, then ∩𝑖=1
𝑛+1 𝐺𝑖 =∩𝑖=1

𝑛 𝐺1 ∩ 𝐺𝑛+1. By 2.12, (∩𝑖=1
𝑛 𝐺𝑖) ∩ 𝐺𝑛+1, is a 

group action on an 𝑅-module 𝑀. Then, ∩𝑖=1
𝑛+1 𝐺𝑖  is a group action on an 𝑅-

module 𝑀. Hence, the statement is correct for every 𝑛. 

In the following, we will study some results of a group 𝐺 as a group 

action on an 𝑅-module 𝑀 and its submodules. 

 

Proposition 2.14: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a 

group action on an 𝑅 -module 𝑀 , then 𝐺  is a group action on every 

submodule of 𝑀. 

Proof: Let 𝑁 be an 𝑅-submodule of an 𝑅- module 𝑀. Since 𝐺 is a group 

action on an 𝑅-module 𝑀, then from 2.7, 𝐺 is a group action on every 𝑅-

submodule 𝑁.  

We will define 𝑀/𝑁.  Let 𝑁 be a submodule of 𝑀. We define a set as: 

𝑀/𝑁 = {𝑥 + 𝑁: 𝑥 ∈ 𝑀} this set with the following operations of an 𝑅-

module 𝑀  : (𝑥 + 𝑁) + (𝑦 + 𝑁) = (𝑥 + 𝑦) + 𝑁  and 𝛽(𝑥 + 𝑁) = 𝛽𝑥 +

𝑁, ∀𝑥, 𝑦 ∈ 𝑀, ∀𝛽 ∈ 𝑅. And it is easy to prove that 𝑀/𝑁 is an 𝑅-module, 

which is called the quotient module. 

 

Proposition 2.15: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. If 𝐺 is a group 

action on 𝑀, then 𝐺 is a group action on 𝑅-module 𝑀/𝑁. 

Proof: Suppose that 𝐺 is a group action on an 𝑅-module 𝑀. Now we prove 

that 𝐺 is a group action on 𝑅-module 𝑀/𝑁. We define 𝑓: 𝐺 × 𝑀/𝑁 ⟶ 𝑀/𝑁 

by 𝑓(𝛼, 𝑥 + 𝑁) = 𝛼(𝑥 + 𝑁) = 𝛼𝑥 + 𝑁 and we have 𝑓(1𝐺 , 𝑥 + 𝑁) = 1𝐺(𝑥 +

𝑁) = 1𝐺𝑥 + 𝑁 = 𝑥 + 𝑁, because 𝐺 is a group action on 𝑀 and 𝑓(𝛼, 𝛽(𝑥 +

𝑁) = 𝛼(𝛽(𝑥 + 𝑁)) = 𝛼(𝛽𝑥 + 𝑁) = 𝛼(𝛽𝑥) + 𝑁 = (𝛼. 𝛽)𝑥 + 𝑁, 

Final 𝑓(𝛼, 𝑥 + 𝑁 + 𝑦 + 𝑁) = 𝑓(𝛼, 𝑥 + 𝑦 + 𝑁) = 𝛼(𝑥 + 𝑦) + 𝑁 =

(𝛼𝑥 + 𝛼𝑦) + 𝑁 = (𝛼𝑥 + 𝑁) + (𝛼𝑦 + 𝑁) = 𝛼(𝑥 + 𝑁) + 𝛼(𝑦 + 𝑁), ∀𝛼, 𝛽 ∈ 𝐺, 

∀𝑥 + 𝑁, 𝑦 + 𝑁 ∈ 𝑀/𝑁, hence from 2.5, 𝐺 is a group action on 𝑅-module 

𝑀/𝑁. 

 

Proposition 2.16: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a 

group action on an 𝑅-module 𝑀, if 𝑁1 and 𝑁2 are submodules of 𝑀, then 𝐺 is 

a group action on 𝑁1 ∩ 𝑁2. 

Proof: Suppose that 𝑁1 and 𝑁2 are 𝑅-submodules of an 𝑅- module 𝑀. Then 

𝑁1 ∩ 𝑁2 is an 𝑅-submodule of an 𝑅- module 𝑀 and 𝐺 is a group action on 

an 𝑅-module 𝑀. Hence from 2.7, 𝐺 is a group action on an 𝑅-submodule 

𝑁1 ∩ 𝑁2. 

 

Proposition 2.17: Let 𝑅  be a ring and 𝑀  be an 𝑅 -module. Let 

𝑁1, 𝑁2, . . . , 𝑁𝑛 be 𝑅-submodules of 𝑀, then 𝐺 is a group action on ∩𝑖=1
𝑛 𝑁𝑖 . 

Proof: Suppose that 𝑁1 , 𝑁2 , . . . , 𝑁𝑛 are 𝑅-submodules of an 𝑅- module 𝑀, 

then ∩𝑖=1
𝑛 𝑁𝑖  is an 𝑅-submodule of an 𝑅- module 𝑀 and 𝐺 is a group action 

on an 𝑅-module 𝑀. Hence from 2.7, 𝐺 is a group action on an 𝑅-submodule 

∩𝑖=1
𝑛 𝑁𝑖 . 

One can define the sum of two submodules of an 𝑅 −module 𝑀 as: 

Let 𝑁1, 𝑁2 be two modules, the sum of them is defined and denoted by 

𝑁1 + 𝑁2 = {𝑥 + 𝑦: 𝑥 ∈ 𝑁1 and 𝑦 ∈ 𝑁2} and 𝑁1 + 𝑁2 is a submodule of 𝑀. 

 

Proposition 2.18: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a 

group action on 𝑀, if 𝑁1 and 𝑁2 are 𝑅-submodules of 𝑀, then 𝐺 is a group 

action on 𝑁1 + 𝑁2. 

Proof: Let 𝐺 be a group action on 𝑀, then by 2.7, 𝐺 is a group action on 𝑅. 

And 𝑁1 + 𝑁2 is an 𝑅-submodule of 𝑀, hence by 2.7 𝐺 is a group action on 

𝑁1 + 𝑁2. 

 

Proposition 2.19: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a 

group action on 𝑀 and 𝑁1, 𝑁2, . . . , 𝑁𝑛 be 𝑅-submodules of 𝑀. 𝐺 is a group 

action on 𝛴𝑖=1
𝑛 𝑁𝑖  if and only if 𝐺 is a group action on 𝑅-submodules 𝑁𝑖 , 𝑖 =

1,2, . . . , 𝑛. 

Proof: Let 𝐺 be a group action on 𝑀, then by 2.7, 𝐺 is a group action on 𝑅. 

Suppose that 𝑁1, 𝑁2 , . . . , 𝑁𝑛 are 𝑅-submodules of 𝑀, then Σ𝑖=1
𝑛 𝑁𝑖  is an 𝑅-

submodule of 𝑀 that is equivalent that 𝐺 is a group action on Σ𝑖=1
𝑛 𝑁𝑖 . 

Conversely, let 𝐺 be a group action on Σ𝑖=1
𝑛 𝑁𝑖 , then by 3.3, 𝐺 is a 

group action on every submodule of Σ𝑖=1
𝑛 𝑁𝑖 . 

 

Corollary 2.20: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑀 and let 𝑁1, 𝑁2 , . . . , 𝑁𝑛  be submodules of 𝑀. 𝐺 is a group action on 

⊕𝑖=1
𝑛 𝑁𝑖  if and only if 𝐺 is a group action on 𝑅-submodules 𝑁𝑖 , 𝑖 = 1,2, . . . . . 𝑛. 

Proof: Since 𝐺 is a group action on 𝑅-module {0𝑀}, hence 𝐺 is a group 

action on 𝑅-module ∩𝑖=1
𝑛 𝑁𝑖 = {0𝑀}. From 2.22, 𝐺  is a group action on 

⊕𝑖=1
𝑛 𝑁𝑖 . And 𝐺 is a group action on 𝑅-submodules 𝑁𝑖 , 𝑖 = 1,2, . . . , 𝑛. 

In the following theorem, we prove that 𝐺 is a group action on 

Σ𝑖=1
𝑛 𝑀𝑖  as 𝑅-modules. 

 

Theorem 2.21: Let 𝑅 be a ring and 𝑀1, 𝑀2, . . . , 𝑀𝑛 be 𝑅-modules. 𝐺 is a 

group action on 𝛴𝑖=1
𝑛 𝑀𝑖  if and only if 𝐺 is a group action on 𝑅-modules 

𝑀𝑖 , 𝑖 = 1,2, . . . , 𝑛. 

Proof: Σ𝑖=1
𝑛 𝑀𝑖  is an 𝑅-modules. Suppose that 𝐺 is a group action on Σ𝑖=1

𝑛 𝑀𝑖  

𝑅-module and from 3.3, then 𝐺 is a group action on 𝑅-submodules 𝑀𝑖, 𝑖 =

1,2, . . . , 𝑛 of Σ𝑖=1
𝑛 𝑀𝑖 . 

Conversely, suppose that 𝐺 is a group action on 𝑅-modules 𝑀𝑖, 𝑖 =

1,2, . . . . . 𝑛, then from 2.7, 𝐺 is a group action on 𝑅, hence 𝐺 is a group 

action on Σ𝑖=1
𝑛 𝑀𝑖  an 𝑅-module. 

 

Corollary 2.22: Let 𝑅 be a ring and 𝑀1, 𝑀2, . . . , 𝑀𝑛 be 𝑅-modules. 𝐺 is a 

group action on ⊕𝑖=1
𝑛 𝑀𝑖  if and only if 𝐺 is a group action on 𝑅-modules 

𝑀𝑖 , 𝑖 = 1,2, . . . , 𝑛. 

Proof: Suppose that 𝐺 is a group action on 𝑅-modules 𝑀𝑖 , 𝑖 = 1,2, . . . , 𝑛, 

then from 2.7, 𝐺 is a group action on a ring 𝑅, hence 𝐺 is a group action on 

⊕𝑖=1
𝑛 𝑀𝑖 − 𝑅-modules and 𝐺 also is a group action on ∩𝑖=1

𝑛 𝑀𝑖 = {0𝑀}, then 

𝐺 is a group action on ⊕𝑖=1
𝑛 𝑀𝑖  as 𝑅-module. 

Conversely, suppose that 𝐺 is a group action on ⊕𝑖=1
𝑛 𝑀𝑖  𝑅-module, 

and from 3.3, 𝐺 is a group action on every 𝑅-submodule 𝑀𝑖 , 𝑖 = 1,2, . . . , 𝑛 

of ⊕𝑖=1
𝑛 𝑀𝑖  𝑅-module. 

 

Proposition 2.23: Let 𝑅∗ be a division ring, and 𝐺⋆ be a subgroup of 𝑅∗, 

then 𝐺⋆ is a group action on an 𝑅∗-module 𝑀. 

Proof: Since 𝐺⋆ is a subgroup of 𝑅⋆, that implies that 𝐺⋆ is a group action 

on 𝑅⋆ that is equivalent to that 𝐺⋆ is a group action on an 𝑅⋆-module 𝑀. 

 

Proposition 2.24: Let 𝑅𝑖 , 𝑖 = 1,2 be rings and 𝑅𝑖-modules 𝑀𝑖 , 𝑖 = 1,2. If 

𝐺𝑖  is a group action on 𝑅𝑖 -modules 𝑀𝑖 , 𝑖 = 1,2, then 𝐺1 × 𝐺2  is a group 

action on an 𝑅1 × 𝑅2 -module 𝑀1 × 𝑀2. 

Proof: Suppose that 𝐺𝑖 is a group action on 𝑅𝑖-modules 𝑀𝑖, 𝑖 = 1,2. And we 

can define the map 𝑓: (𝐺1 × 𝐺2) × (𝑀1 × 𝑀2) ⟶ 𝑀1 × 𝑀2  by 

𝑓((𝛼, 𝛽), (𝑥, 𝑦)) = (𝛼𝑥, 𝛽𝑦).  This map satisfies the following axioms: 

𝑓((1𝐺1
, 1𝐺2

), (𝑥, 𝑦)) = (1𝐺1
𝑥, 1𝐺2

𝑦) = (𝑥, 𝑦) , 𝑓((𝛼, 𝛽), ((𝛼1, 𝛽2)(𝑥, 𝑦)) =

𝑓((𝛼, 𝛽), (𝛼1𝑥, 𝛽2𝑦)) = (𝛼(𝛼1𝑥), 𝛽(𝛽2𝑦)) = ((𝛼 ⋅ 𝛼1)𝑥, (𝛽 ⋅ 𝛽2)𝑦) = ((𝛼 ⋅

𝛼1), (𝛽 ⋅ 𝛽2))(𝑥, 𝑦) = ((𝛼, 𝛽)(𝛼1, 𝛽2))(𝑥,  Finally 𝑓((𝛼, 𝛽), ((𝑥, 𝑦) +

(𝑐, 𝑑))) = ((𝛼, 𝛽)(𝑥 + 𝑐, 𝑦 + 𝑑) = (𝛼(𝑥 + 𝑐, 𝛽(𝑦 + 𝑑)) = (𝛼𝑥 + 𝛼𝑐, 𝛽𝑦 +

𝛽𝑑) = (𝛼𝑥 + 𝛽𝑦) + (𝛼𝑐 + 𝛽𝑑) = (𝛼, 𝛽)(𝑥, 𝑦) + (𝛼, 𝛽)(𝑐, 𝑑) , 
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∀(𝛼, 𝛽), (𝛼1, 𝛽2) ∈ 𝐺1 × 𝐺2 , ∀(𝑥, 𝑦), (𝑐, 𝑑) ∈ 𝑀1 × 𝑀2 . Hence 𝐺1 × 𝐺2  is a 

group action on an 𝑅1 × 𝑅2-module 𝑀1 × 𝑀2. 

 

Proposition 2.25: Let 𝑅𝑖  be rings and 𝑀𝑖  be 𝑅𝑖-modules, 𝑖 = 1,2, . . . . . . , 𝑛. 

If 𝐺𝑖 is a group action on 𝑅𝑖-modules 𝑀𝑖, 𝑖 = 1,2, . . . . . . , 𝑛 ,then 𝛱𝑖=1
𝑛 𝐺𝑖  is a 

group action on 𝛱𝑖=1
𝑛 𝑅𝑖-modules 𝛱𝑖=1

𝑛 𝑀𝑖. 

Proof: For 𝑛 = 2, we have from 2.24, 𝛱𝑖=1
2 𝐺𝑖 is a group action on Π𝑖=1

2 𝑅𝑖  -

module Π𝑖=1
2 𝑀𝑖. Suppose that the statement is correct for 𝑛, i.e Π𝑖=1

𝑛 𝐺𝑖 is a 

group action on an Π𝑖=1
𝑛 𝑅𝑖-modules Π𝑖=1

𝑛 𝑀𝑖 . . . . . (∗). We prove that it is true 

for 𝑛 + 1. Let 𝐺𝑖 be group actions on 𝑅𝑖-modules 𝑀𝑖 , 𝑖 = 1,2, . . . . . . , 𝑛, 𝑛 + 1, 

then Π𝑖=1
𝑛+1𝐺𝑖 = Π𝑖=1

𝑛 𝐺1 × 𝐺𝑛+1, from 2.24, and Π𝑖=1
𝑛 𝐺𝑖  is a group action 

by...(*) and 𝐺𝑛+1 is a group action on an 𝑅𝑛+1-module 𝑀𝑛+1. Hence Π𝑖=1
𝑛 𝐺𝑖  

is a group action on an Π𝑖=1
𝑛 𝑅𝑖-modules Π𝑖=1

𝑛 𝑀𝑖  for every 𝑛. 

  

Proposition 2.26: Let 𝑓: 𝐺1 ⟶ 𝐺2 be a group homomorphism. Suppose 

that 𝐺2 is a group action on an 𝑅-module 𝑀 and 𝑓 is injective, then 𝐺1 is a 

group action on an 𝑅-module 𝑀. 

Proof: Suppose that 𝐺2 is a group action on an 𝑅-module 𝑀, 𝑓 is a group 

homomorphism and injective, then 𝐺1/𝐾𝑒𝑟𝑓 ≅ 𝐼𝑚𝑓 and 𝑘𝑒𝑟𝑓 = 1𝐺1
, then 

𝐺1 ≅ 𝐼𝑚𝑓 and 𝐼𝑚𝑓 is a subgroup of 𝐺2, then from 2.9, 𝐼𝑚𝑓 is a group 

action on an 𝑅-module 𝑀, hence 𝐺1 is a group action on an 𝑅-module 𝑀. 

 

Corollary 2.27: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺∗ be a group 

of all inverse elements in a ring 𝑅, then 𝐺∗ is a group action on an 𝑅-module 

𝑀.  

Proof: Since 𝐺∗ is a subgroup of 𝑅. Hence 𝐺∗ is a group action on 𝑅 that is 

implies that 𝐺∗ is a group action on an 𝑅-module 𝑀. 

 

Corollary 2.28: Let 𝐾 be a field and 𝑉 be 𝐾-vector space. Let 𝑄 be a 

subgroup of 𝐾, then 𝑄 is a group action on a 𝐾-vector space 𝑉. 

Proof: Since 𝑄 is a subgroup of 𝐾, then 𝑄 is a group action on 𝐾 which is 

equivalent to that 𝑄 is a group action on a 𝐾-vector space 𝑉. 

 

Theorem 2.29: Let 𝑅 be a ring and (𝑁, 𝑀, 𝐾) be 𝑅-modules. Then we 

have the following cases: 

1. 𝐺 is a group action on 𝑁 and 𝐾 if and only if 𝐺 is a group action on an 

𝑀. 

2. 𝐺 is a group action on 𝐾 and 𝑁 if and only if 𝐺 is a group action on 

𝑁 ⊕ 𝐾. 

Proof: 1: Suppose that 𝐺 is a group action on 𝑁 and 𝐾, then 𝐺 must be a 

group action on 𝑀 because if it is not, hence by 2.7, 𝐺 is not a group action 

on 𝑁 and 𝐾 and this is a contradiction. 

       Conversely, Suppose that 𝐺 is a group action on 𝑀. If 𝐺 is not a group 

action on 𝑁 or 𝐾, then by 2.7, 𝐺 is not a group action on 𝑀 and this is a 

contradiction. Hence 𝐺 is a group action on 𝑅-modules 𝑁 and 𝐾. 

Proof: 2: Assume that 𝐺 is a group action on 𝑁 and 𝐾. Apply (1) to the 

following short exact sequence 0 → 𝑁 → 𝑀 = 𝑁 ⊕ 𝐾 → 𝐾 → 0, we get that 

𝐺 is a group action on 𝑀. 

Conversely, suppose that 𝐺 is a group action on 𝑀 = 𝑁 ⊕ 𝐾. Then 

𝐺 is a group action on 𝑁 and 𝐾, because 𝑁 and 𝐾 are submodules of 𝑀. 

In the following, we will study if 𝑀 is finitely generated 𝑅-module, 

then 𝐺 is a group action on 𝑅-module 𝑀. And some new results for a 

finitely generated 𝑅-module 𝑀. 

 

Definition 2.30 [15]: For a ring 𝑅, an 𝑅-module 𝑀 is called finitely 

generated (f. g for a short), for every family {𝑀𝑖}𝑖∈𝐼 , (𝐼 is infinite set) of 

submodules of 𝑀 with 𝑀 = 𝛴𝑖∈𝐼𝑀𝑖 , there is a finite subset 𝐽 ⊂ 𝐼 such that 

𝑀 = 𝛴𝑗∈𝐽𝑁𝑖 . 

 

Theorem 2.31: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on a ring 𝑅, if 𝑀 is finitely generated 𝑅-module, then 𝐺 is a group 

action on 𝑅-module 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝑀 be finitely generated 𝑅-

module, then we consider (𝑀𝑖)𝑖∈𝐼 is a family of infinite submodules of the 

𝑅-module 𝑀 with 𝑀 = Σ𝑖∈𝐼𝑀𝑖 . 

Since 𝑀𝑖 ⊂ 𝑀 as 𝑅-modules and 𝑀 is finitely generated 𝑅-module, 

then there exists a finite subset 𝐽 of 𝐼 such that 𝑀 = Σ𝑗∈𝐽𝑀𝑗 . Now we can 

define the map 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 by 𝑓(𝛼, 𝑥) = 𝛼𝑥 where 𝑥 = Σ𝑗∈𝐽𝑥𝑖  and 𝑥𝑖 =

𝑟𝑖𝑚𝑖 . This map satisfies the following: 𝑓(1𝐺 , 𝑥) = 𝛼𝑥 = 𝑓(1𝐺, Σ𝑗∈𝐽𝑥𝑗) =

1𝐺Σ𝑗∈𝐽𝑥𝑗 = Σ𝑗∈𝐽1𝐺𝑥𝑗 = Σ𝑗∈𝐽1𝐺(𝑟𝑗𝑚𝑗) = Σ𝑗∈𝐽(1𝐺𝑟𝑗)𝑚𝑗 = Σ𝑗∈𝐽𝑟𝑗𝑚𝑗 = Σ𝑗∈𝐽𝑥𝑗 =

𝑥,  𝑓(𝛼, 𝛽𝑥) = 𝑓(𝛼, 𝛽Σ𝑗∈𝐽𝑥𝑗) = 𝛼(𝛽Σ𝑗∈𝐽𝑥𝑗) = 𝛼Σ𝑗∈𝐽𝛽𝑥𝑗 = 𝛼Σ𝑗∈𝐽𝛽(𝑟𝑗𝑚𝑗) =

𝛼Σ𝑗∈𝐽(𝛽𝑟𝑗)𝑚𝑗 = Σ𝑗∈𝐽𝛼(𝛽𝑟𝑗)𝑚𝑗 = Σ𝑗∈𝐽(𝛼. 𝛽)𝑟𝑗𝑚𝑗 = (𝛼. 𝛽)Σ𝑗∈𝐽𝑟𝑗𝑚𝑗 =

(𝛼. 𝛽)Σ𝑗∈𝐽𝑥𝑗 = (𝛼. 𝛽)𝑥 . Finally, 𝑓(𝛼, 𝑥 + 𝑦) = 𝑓(𝛼, Σ𝑗∈𝐽𝑥𝑗 + Σ𝑗∈𝐽𝑦𝑗) =

𝛼(Σ𝑗∈𝐽𝑥𝑗 + Σ𝑗∈𝐽𝑦𝑗) = 𝛼Σ𝑗∈𝐽𝑥𝑗 + 𝛼Σ𝑗∈𝐽𝑦𝑗 = 𝛼𝑥 + 𝛼𝑦, ∀𝛼, 𝛽 ∈ 𝐺, ∀𝑥 =

Σ𝑗∈𝐽𝑥𝑗 , 𝑦 = Σ𝑗∈𝐽𝑦𝑗 ∈ 𝑀. Hence from 2.5, 𝐺 is a group action on 𝑅-module 𝑀. 

 

Corollary 2.32: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅, if 𝑀 is finitely generated 𝑅-module, then 𝐺 is a group action on 

every submodule of 𝑅-module 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝑁 be a submodule of finitely 

generated 𝑅-module 𝑀, then 𝑁 is finitely generated 𝑅-module and from 

2.31, 𝐺 is a group action on an 𝑅-module 𝑁. 

 

Theorem 2.33: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅, if 𝑀 is Neotherian 𝑅-module, then 𝐺 is a group action on 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝑀 be Noetherian 𝑅-module, 

then 𝑀 is finitely generated 𝑅-module [15], and from 2.31, 𝐺 is a group 

action on an 𝑅-module 𝑀. 

 

Corollary 2.34: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅 and if 𝑀 is Noetherian 𝑅-module, then 𝐺 is a group action on 

every submodule of the 𝑅-module 𝑀. 

Proof: Let 𝐺  be a group action on 𝑅  and let 𝑁  be a submodule of 

Noetherian 𝑅-module 𝑀, then 𝑁 is a Noetherian 𝑅-module. and from the 

theorem [15], 𝑁 is a finitely generated 𝑅-module and from the theorem 

2.31; hence, 𝐺 is a group action on an 𝑅-module 𝑁. 

 

Definition 2.35 [15]: An 𝑅-module 𝑀 is said to be cyclic if there is an 

element 𝑚𝑜 ∈ 𝑀 such that every 𝑚 ∈ 𝑀 is of the form 𝑚 = 𝑟𝑚𝑜, where 𝑟 ∈

𝑅 . Also 𝑚𝑜  is called a generator of 𝑀 and we can write 𝑀 =< 𝑚𝑜 >=

{𝑟𝑚𝑜: 𝑟 ∈ 𝑅}. 

 

Corollary 2.36: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅, if 𝑀 is a cyclic 𝑅-module, then 𝐺 is a group action on 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝑀 be cyclic 𝑅-module 𝑀, then 

we can define the map 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 by 𝑓(𝛼, 𝑚) = 𝛼𝑚 where 𝑚 = 𝑟𝑚0. 

This map satisfies the following : 𝑓(1𝐺 , 𝑚) = 𝑓(1𝐺 , 𝑟𝑚0) = 1𝐺(𝑟𝑚0) =

(1𝐺𝑟)𝑚0 = 𝑟𝑚0 = 𝑚 . 𝑓(𝛼, 𝛽𝑚) = 𝑓(𝛼, 𝛽𝑟𝑚0) = 𝛼(𝛽𝑟𝑚0) = 𝛼(𝛽𝑟)𝑚0 =

(𝛼𝛽)𝑟𝑚0 = (𝛼𝛽)𝑚 .Finally 𝑓(𝛼, 𝑚1 + 𝑚2) = 𝑓(𝛼, 𝑟1𝑚0 + 𝑟2𝑚0) =

𝛼(𝑟1𝑚0 + 𝑟2𝑚0) = 𝛼𝑚1 + 𝛼𝑚2, ∀𝛼, 𝛽 ∈ 𝐺  and ∀𝑚1, 𝑚2 ∈ 𝑀 . Hence from 

2.5, 𝐺 is a group action on 𝑅-module 𝑀. 

 

Theorem 2.37: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅, if 𝑀 is a simple 𝑅-module, then 𝐺 is a group action on 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝑀 be a submodule of a simple 

𝑅-module 𝑀, then 𝑀 is a cyclic 𝑅-module [15], and from the theorem 2.36, 

hence, 𝐺 is a group action on an 𝑅-module 𝑀. 

 

Theorem 2.38: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅, if 𝑁 is a maximal 𝑅-submodule of 𝑀, then 𝐺 is a group action on 

𝑀/𝑁. 
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Proof: Let 𝐺 be a group action on 𝑅 and let 𝑁 be a maximal 𝑅-submodule 

of an 𝑅-module 𝑀, then 𝑀/𝑁 is a simple 𝑅-module that is implies that 

𝑀/𝑁 is a cyclic 𝑅-module and by [15], from the theorem 2.36, hence, 𝐺 is a 

group action on an 𝑅-module 𝑀/𝑁. 

 

Corollary 2.39: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅, if 𝑀 is a semisimple 𝑅-module, then 𝐺 is a group action on 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅. 𝑀 =⊕𝑖=1
𝑛 𝑀𝑖  is a semisimple 𝑅-

module, then 𝑀𝑖  are simples 𝑅-modules, then 𝑀𝑖  are cyclic 𝑅-modules 

[25], and from the theorem 2.36 and 2.22, 𝐺 is a group action on an 𝑅-

module 𝑀. 

  

Theorem 2.40: Let 𝑅 be a ring and 𝑀 be an 𝑅-module. Let 𝐺 be a group 

action on 𝑅 and if 𝑀 is a free 𝑅-module, then 𝐺 is a group action on 𝑅-

module 𝑀. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝑀 be a free 𝑅-module, then 𝑀 

has a basis. Suppose that the basis 𝑆 = {𝑥1, . . . , 𝑥𝑛} and every element 𝑚 ∈

𝑀  can be written uniquely as 𝑚 = Σ𝑟𝑖𝑥𝑖  for 𝑟𝑙, . . . , 𝑟𝑛 ∈ 𝑅  and 

𝑥1, 𝑥2, . . . . . . , 𝑥𝑛 ∈ 𝑆 . Now we can define the map 𝑓: 𝐺 × 𝑀 ⟶ 𝑀  by 

𝑓(𝛼, 𝑚) = 𝛼𝑚 where 𝑚 = Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖 . This map satisfies the following : 

𝑓(1𝐺 , 𝑚) = 𝛼𝑚 = 𝑓(1𝐺 , Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖) = 1𝐺Σ𝑖=1

𝑛 𝑟𝑖𝑥𝑖 = Σ𝑖=1
𝑛 1𝐺(𝑟𝑖𝑥𝑖) =

Σ𝑖=1
𝑛 ((1𝐺𝑟𝑖)𝑥𝑖) = Σ𝑖=1

𝑛 𝑟𝑖𝑚𝑖 = 𝑚 . 𝑓(𝛼, 𝛽𝑚) = 𝑓(𝛼, 𝛽Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖) =

𝛼(𝛽Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖) = 𝛼Σ𝑖=1

𝑛 (𝛽𝑟𝑖)𝑥𝑖 = Σ𝑖=1
𝑛 𝛼(𝛽𝑟𝑖)𝑥𝑖) = Σ𝑖=1

𝑛 (𝛼. 𝛽)𝑟𝑖𝑥𝑖 =

(𝛼. 𝛽)Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖 = (𝛼. 𝛽)Σ𝑖=1

𝑛 𝑟𝑖𝑥𝑖 = (𝛼. 𝛽)𝑚 . Finally 𝑓(𝛼, 𝑥𝑚1 + 𝑚2) =

𝑓(𝛼, Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖 + Σ𝑖=𝑛

𝑛 𝑟𝑖𝑦𝑖) = 𝛼(Σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖 + Σ𝑖=1

𝑛 𝑟𝑖𝑦𝑖) = 𝛼Σ𝑗∈𝐽𝑟𝑖𝑥𝑖 +

𝛼Σ𝑖=1
𝑛 𝑟𝑖𝑦𝑖 = 𝛼𝑚1 + 𝛼𝑚2.  ∀𝛼, 𝛽 ∈ 𝐺  and ∀𝑚 = Σ𝑗∈𝐽𝑟𝑖𝑥𝑖 , 𝑚2 = Σ𝑖=1

𝑛 𝑟𝑖𝑦𝑖 ∈ 𝑀 . 

Hence from 2.5, 𝐺 is a group action on 𝑅-module 𝑀. 

 

3.  A group Action on A ring 𝑹. 

In this section, we will study some results on a ring and its ideals. In 

2.6, we defined a group action on a ring 𝑅. 

 

Definition 3.1: Let 𝑅 be a ring. 𝐺 is called a group action on a ring 𝑅 if 

every subgroup of 𝐺 is a group action on a ring 𝑅. 

 

Proposition 3.2: Let 𝑅 be a ring and 𝐺 is a group action on a ring 𝑅 if 

and only if every subgroup of 𝐺 is a group action on a ring 𝑅 as 𝑅-module. 

Proof: Suppose that 𝐺 is a group action on a ring 𝑅, then we have {1𝐺} is 

the trivial subgroup of 𝐺 and it is a group action on 𝑅. Now let 𝐺1 be a 

proper subgroup of 𝐺, then 𝐺1 is a group action on an 𝑅. From 2.7, 𝐺1 is a 

group action on an 𝑅 as an 𝑅-module. 

Conversely, since every subgroup of 𝐺  including 𝐺  and {1𝐺}  are 

group actions on 𝑅. Hence from 3.1, 𝐺 is a group action on 𝑅 as 𝑅-module. 

 

Proposition 3.3: Let 𝑅 be a ring. Let 𝐺 be a group action on a ring 𝑅, 

then 𝐺 is a group action on every ideal of a ring 𝑅. 

Proof: Let 𝐽 be an ideal of a ring 𝑅 and since 𝐺 is a group action on a ring 𝑅, 

then 𝐺 is a group action on an 𝑅-submodule 𝐽, hence from 2.7, 𝐺 is a group 

action on every 𝑅-submodule 𝐽 of a ring 𝑅. 

 

Proposition 3.4: Let 𝑅 be a ring and 𝐽 be an ideal of a ring 𝑅. If 𝐺 is a 

group action on a ring 𝑅, then 𝐺 is a group action on 𝑅-module 𝑅/𝐽. 

Proof: Assume that 𝐺 is a group action on a ring 𝑅. Let 𝐽 be an ideal of 𝑅, 

then 𝑅/𝐽 is called the quotient ring. One can easily to prove that 𝑅/𝐽 is 𝑅-

module. Now we prove that 𝐺 is a group action on 𝑅-module 𝑅/𝐽. We 

define 𝑓: 𝐺 × 𝑅/𝑗 ⟶ 𝑅/𝐽 by 𝑓(𝛼, 𝑥 + 𝐽) = 𝛼(𝑥 + 𝐽) = 𝛼𝑥 + 𝐽 and we have 

𝑓(1𝐺 , 𝑥 + 𝐽) = 1𝐺(𝑥 + 𝐽) = 1𝐺𝑥 + 𝐽 = 𝑥 + 𝐽 because 𝐺 is a group action on 

𝑅  and 𝑓(𝛼, 𝛽(𝑥 + 𝐽) = 𝛼(𝛽(𝑥 + 𝐽)) = 𝛼(𝛽𝑥 + 𝐽) = 𝛼(𝛽𝑥) + 𝐽 = (𝛼. 𝛽)𝑥 + 𝐽 

𝑓(𝛼, 𝑥 + 𝐽 + 𝑦 + 𝐽) = 𝑓(𝛼, 𝑥 + 𝑦 + 𝐽) = 𝛼(𝑥 + 𝑦) + 𝐽 = (𝛼𝑥 + 𝛼𝑦) + 𝐽 =

𝛼(𝑥 + 𝐽) + 𝛼(𝑦 + 𝐽), ∀𝛼, 𝛽 ∈ 𝐺, ∀𝑥 + 𝐽, 𝑦 + 𝐺 ∈ 𝑅/𝐽. From 2.5, 𝐺 is a group 

action on 𝑅-module 𝑅/𝐽. 

Theorem 3.5: Let 𝑅 be a ring and 𝐼 and 𝐽 be ideals of a ring 𝑅. Then we 

have the following cases: 

1. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on 𝐼 ∩ 𝐽 as 𝑅-

module. 

2. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on 𝐼 + 𝐽 as 𝑅-

module. 

3. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on 𝐼 × 𝐽 as 𝑅-

module. 

4. If 𝐺 is a group action on 𝑅. 𝐺 is a group action on 𝐼 and 𝐽 as 𝑅 

modules if and only if 𝐺 is a group action on 𝐼 ⊕ 𝐽 as 𝑅-module. 

Proof 1, 2, and 3: Let 𝑅 be a ring and 𝐼 and 𝐽 be ideals of a ring 𝑅, then 𝐼 ∩ 𝐽, 

𝐼 + 𝐽 and 𝐼 × 𝐽 are ideals of a ring 𝑅. And it is clear that 𝐼 ∩ 𝐽, 𝐼 + 𝐽 and 𝐼 × 𝐽 

are 𝑅-modules and 𝐺 is a group action on 𝑅 and from 2.5, 𝐺 is a group 

action on 𝐼 ∩ 𝐽, 𝐼 + 𝐽 and 𝐼 × 𝐽 as 𝑅-modules. 

Proof 4: Suppose that 𝐺 is a group action on 𝐼 and 𝐽 as 𝑅 modules and 𝐺 is 

a group action on 𝑅, then from 2 in 3.5, 𝐺 is a group action on 𝐼 + 𝑗 as 𝑅-

module. And from 1 in 3.5, if 𝐼 ∩ 𝐽 = {0}, then 𝐺 also is a group action on it, 

hence 𝐺 is a group action on 𝐼 ⊕ 𝑗 as 𝑅-module. 

Conversely, suppose that 𝐺 is a group action on 𝐼 ⊕ 𝐽. Then 𝐺 is a 

group action on 𝐼 and 𝐽. Because 𝐼 and 𝐽 are 𝑅-submodules of 𝐼 ⊕ 𝐽. 

 

Corollary 3.6: Let 𝑅 be a ring and 𝐼 and 𝐽 be ideals of a ring 𝑅. Then we 

have the following cases : 

1. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on ∩𝑖=1
𝑛 𝐽𝑖 as 𝑅-

module. 

2. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on Σ𝑖=1
𝑛 𝐽𝑖 as 𝑅-

module. 

3. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on Π𝑖=1
𝑛 𝐽𝑖 as 𝑅-

module. 

4. If 𝐺 is a group action on 𝑅, then 𝐺 is a group action on 𝑗𝑖 as 𝑅-

modules if and only if 𝐺 is a group action on ⊕𝑖=1
𝑛 𝐽𝑖 as 𝑅-module. 

Proof 1, 2, and 3 : Let 𝑅 be a ring and 𝐽𝑖 be ideals of a ring 𝑅, then ∩𝑖=1
𝑛 𝐽𝑖 is 

an ideal of a ring 𝑅. It is a known that ∩𝑖=1
𝑛 𝐽𝑖  is 𝑅-module and 𝐺 is a group 

action on 𝑅, hence from 2.5, 𝐺 is a group action on ∩𝑖=1
𝑛 𝐽𝑖. It is clear that 

Σ𝑖=1
𝑛 𝐽𝑖 and Π𝑖=1

𝑛 𝐽𝑖 are also 𝑅-modules and 𝐺 is a group action on 𝑅. Hence 

from 2.5, 𝐺 is a group action on Σ𝑖=1
𝑛 𝐽𝑖 and   Π𝑖=1

𝑛 𝐽𝑖. 

Proof 4:  Suppose that 𝐺 is a group action on 𝐽𝑖 as 𝑅-modules, then from 2 

in 3.5, 𝐺 is a group action on Σ𝐽𝑖 as 𝑅-module. And from 1 in 3.5, if ∩ 𝐽𝑖 =

{0}, then 𝐺 also is a group action on it, hence 𝐺 is a group action on ⊕𝑖=1
𝑛 𝐽𝑖 

as 𝑅-module. 

Conversely, suppose that 𝐺 is a group action on ⊕𝑖=1
𝑛 𝐽𝑖. Then 𝐺 is a 

group action on 𝐽𝑖. Because 𝐽𝑖 are 𝑅-submodules of ⊕𝑖=1
𝑛 𝐽𝑖 . 

 

Corollary 3.7: Let 𝑅 be a ring and 𝐼 be a maximal ideal of a ring 𝑅. if 𝐺 is 

a group action on 𝑅, then 𝐺 is a group action on 𝑅/𝐼 as an 𝑅-module. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝐼 be a maximal ideal of a ring 𝑅. 

Then 𝑅/𝐼 is a simple 𝑅-module, which implies that 𝑅/𝐼 is a cyclic 𝑅-

module [15], and from the theorem 2.36, hence 𝐺 is a group action on an 

𝑅-module 𝑅/𝐼. 

 

Corollary 3.8: Let 𝑅 be a PID ring and 𝐼 be a prime ideal of a ring 𝑅, if 𝐺 

is a group action on 𝑅, then 𝐺 is a group action on 𝑅/𝐼 as an 𝑅-module. 

Proof: Let 𝐺 be a group action on 𝑅 and let 𝐼 be a prime ideal of a PID ring 

𝑅 ( every ideal is a cyclic ) that is equivalent 𝐼 is a maximal ideal. [25], then 

𝑅/𝐼 is a simple 𝑅-module that is implies that 𝑅/𝐼 is a cyclic 𝑅-module [15] 

and from the theorem 2.36 hence, 𝐺 is a group action on an 𝑅-module 𝑅/𝐼. 

 

Examples 3.9 

1. It is known that (𝐺 = {1, −1},⋅) is a group, and it is a group action on 

ℤ. Let 𝑛ℤ, (𝑛 is a prime number) be an ideal of the ring ℤ, then it is a 

maximal ideal because 𝑛 is a prime number, then ℤ/𝑛ℤ is a simple ℤ- 

module and it is a cyclic ℤ- module, hence 𝐺 is a group action on a 

ℤ − module ℤ/𝑛ℤ. 

2. It is known that (ℚ∗,⋅) where ℚ is the field of rational numbers set 
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and ℚ∗ = ℚ − {0} is a group and it is not a group action on ℤ, then it 

is not a group action on ℤ-module ℚ but ℚ∗ it is a group action on 

the field ℚ, hence it is a group action on ℤ-module (ℚ, +). 

 

  4. A group Action on G-Module 

In this part, we will introduce and study an abelian group on the 

group (𝐺, . ) which is called the 𝐺-module, and the relation between it and 

the group action on it. We also study the homomorphism of 𝐺-module and 

some theorems and properties. 

 

Definition 4.1 [4]: Let 𝐺 be a group. A left G-module consists of an 

abelian group 𝑀 together with a left group action 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 is defined 

by 𝑓(𝑔, 𝑚) = 𝑔𝑚 we have 𝑔(𝑚1 + 𝑚2) = 𝑔𝑚1 + 𝑔𝑚2. 

 

Remark 4.2 [4]: A left G-module can be turned into a right 𝐺-module 𝑀, 

where 𝑓: 𝐺 × 𝑀 ⟶ 𝑀  is defined by (𝑔, 𝑚) = 𝑚𝑔 = 𝑔−1𝑚  we have 

𝑔−1(𝑚1 + 𝑚2) = 𝑔−1𝑚1 + 𝑔−1𝑚2 

 

Definition 4.3 [4]: A submodule of a G-module 𝑀 is a subgroup 𝐴 ⊆ 𝑀 

that is stable under the action of 𝐺, i.e 𝑔 ⋅ 𝑎 ∈ 𝐴, ∀𝑔 ∈ 𝐺 and ∀𝑎 ∈ 𝐴. 

 

Definition 4.4: Let 𝐺 be a group and let 𝑀 and 𝑁 be 𝐺-modules, the map 

𝑓: 𝑀 ⟶ 𝑁 is called a homomorphism of 𝐺-modules if and only if :   

1.  𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) 

2.  𝑓(𝛼𝑥) = 𝛼𝑓(𝑥), ∀𝛼 ∈ 𝐺, ∀𝑥, 𝑦 ∈ 𝑀. 

 

Lemma 4.5: Let 𝐺 be a group and 𝑀 is an abelian group. 𝑀 is 𝐺-module 

if and only if 𝐺 is a group action on 𝐺-module 𝑀. 

Proof: Suppose that 𝑀 is a 𝐺-module, then by 4.1, 𝑀 is an abelian group, 

and there is a map 𝑓: 𝐺 × 𝑀 ⟶ 𝑀 is defined by 𝑓(𝛼, 𝑥) = 𝛼𝑥 and 𝑀 is 𝐺-

module, then satisfies the following : 𝑓(1𝐺 , 𝑥) = 1𝐺𝑥 = 𝑥, 𝑓(𝛼, 𝛽𝑥) =

𝛼(𝛽𝑥) = (𝛼. 𝛽)𝑥. Finally 𝑓(𝛼, 𝑥 + 𝑦) = 𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦, ∀𝛼, 𝛽 ∈ 𝐺 and 

∀𝑥, 𝑦 ∈ 𝑀, hence 𝐺 is a group action on 𝐺-module 𝑀. 

Conversely, assume that 𝐺 is a group action on 𝐺-module 𝑀, then 

satisfies the axioms in 3.4 and we have 𝑓(𝛼, 𝑥 + 𝑦) = 𝛼(𝑥 + 𝑦) = 𝛼𝑥 +

𝛼𝑦, ∀𝛼, 𝛽 ∈ 𝐺, ∀𝑥, 𝑦 ∈ 𝑀. And from 4.1, 𝑀 is a 𝐺-module.  

We study the following two important examples: 

 

Examples 4.6 

1. It is known that (ℚ, +,⋅) is the field of rational numbers set and (ℚ∗,⋅

) = ℚ − {0} is a group and it is a group action on the abelian group 

(ℚ, +) as ℚ-module. then (ℚ, +) is ℚ∗-module. 

2. The set of all matrices of the order 2 × 2 with entries from ℝ is an 

abelian group denoted by (𝑀2(ℝ), +) and (ℚ∗,⋅) is a group action on 

𝑀2(ℝ) and hence 𝑀2(ℝ) is ℚ∗-module. 

 

Theorem 4.7: Let (𝐺,⋅) be a group and (𝐴, 𝐵, 𝐶) be 𝐺-modules, then we 

have the following cases : 

1. 𝐺 is a group action on 𝐴 and 𝐶 if and only if 𝐺 is a group action on 

an 𝐵. 

2. 𝐺 is a group action on 𝐴 ⊕ 𝐶 if and only if 𝐺 is a group action on 𝐴 

and 𝐶. 

Poof 1: Assume that 𝐺 is a group action on 𝐴 and 𝐶, then 𝐺 must be a group 

action on 𝐵 because if it is not, then by 4.5, 𝐵 is not 𝐺-module, and this is a 

contradiction. 

Conversely, suppose that 𝐺 is a group action on 𝐵. 𝐺 must be a group 

action on 𝐴 and 𝐶. Because if it is not a group action on 𝐴 or 𝐶, then by 4.5, 

𝐴  or 𝐶  is not 𝐺 - module and 𝐺  is not a group action on 𝐵  this a 

contradiction. Hence 𝐺 is a group action on 𝐴 and 𝐶. 

Poof 2: Suppose that 𝐺 is a group action on 𝐴 and 𝐶. Apply (1) to the 

following short exact sequence 0 ⟶ 𝐴 ⟶ 𝐵 = 𝐴 ⊕ 𝐶 ⟶ 𝐶 ⟶ 0, we get 

that 𝐺 is a group action on 𝐵. 

Conversely, suppose that 𝐺 is a group action on 𝐵 = 𝐴 ⊕ 𝐶, then 𝐺 is 

a group action on 𝐴 and 𝐶 because 𝐴 and 𝐶 are 𝐺-submodules of 𝐺-module 

𝐵. 

In the following theorem we prove that 𝐺 is a group action on 𝐾𝑒𝑟𝑓 

and 𝐼𝑚𝑓. 

 

Theorem 4.8: Let 𝑀, 𝑁  be 𝐺 -modules and 𝑓: 𝑀 ⟶ 𝑁  be a 

homomorphism of 𝐺-modules. If 𝐺 is a group action on 𝑀 and 𝑁, then 𝐺 is 

a group action on 𝐾𝑒𝑟𝑓 and 𝐼𝑚𝑓. 

Proof: Suppose that 𝐺 is a group action on a 𝐺-module 𝑀 and 𝐾𝑒𝑟𝑓 is a 𝐺-

submodule of 𝑀. Hence from 2.14, 𝐺 is a group action on 𝐾𝑒𝑟𝑓 as a 𝐺-

submodule of 𝑀. And also 𝐺 is a group action on a 𝐺-module 𝑁 and 𝐼𝑚𝑓 is 

a 𝐺-submodule of 𝐺-module 𝑁. Then by 2.14, 𝐺 is a group action on 𝐼𝑚𝑓. 
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