

Original Research

 Open Access Full Text Article

Alterations in Hematological and Biochemical Profiles in Cancer Patients Before and After Chemotherapy at Dhamar General Hospital Authority , Yemen

**Mohammed A. Al-Kholani^{1,2*}, Fatima M. AL-maselmy², Gehad A. Al-Mashramah³
Abdulrahman H. Amer^{1,4}**

¹Department of Laboratory Medicine, Faculty of Medical Sciences, Thamar University, Dhamar, Yemen

²Department of Medical Laboratories, Faculty of Medical Sciences, Al-Hikma University, Dhamar, Yemen

³Resident of Orthopedic Surgery Department, Al-Thawra Modern General Hospital, Sana'a, Yemen

⁴Department of Medical Laboratory, Faculty of Medical Sciences, Al-Saeeda University, Dhamar, Yemen

For Correspondence:

Mohammed A. Al-Kholani
Faculty of Medical Sciences, Thamar University,
Dhamar, Yemen
Tel: +967 777937519
Email: alkholanimohammed1976@gmail.com

To cite this article:

Al-Kholani MA, AL-maselmy FM, Al-Mashramah GA, Amer AH., Alterations in Hematological and Biochemical Profiles in Cancer Patients Before and After Chemotherapy at Dhamar General Hospital Authority, Yemen. Annals of Medicine & Health. 2025; 7(2):26 - 31.

DOI:<https://doi.org/10.53460/AMH722025.010>

Article history:

Received 28 April, 2024

Received in revised form 20 November 2025

Accepted 25 November 2025

©2025 Al-Kholani et al; This work is published and licensed by TUFM. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC-BY-NC4.0) (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial use, please contact fmhs@tu.edu.ye. Journal website: <https://journal.tu.edu.ye/index.php/amh/index>

Abstract

Background: Chemotherapy, a cornerstone of cancer treatment, is associated with significant hematological and biochemical toxicities that require careful monitoring. In resource-limited settings like Yemen, where the healthcare system faces profound challenges, the patterns and management of these side effects are poorly documented.

Aim: This study aimed to evaluate the alterations in hematological and biochemical profiles in cancer patients before and after chemotherapy at a public hospital in Yemen.

Methods: A hospital-based observational study was conducted on 50 cancer patients at the Oncology Unit of the Dhamar General Hospital Authority (DGHA). A structured questionnaire was used for collecting the Socio-demographic information and relevant medical history. While, the clinical, and laboratory data (Complete Blood Count, Liver Function Tests, Kidney Function Tests) were collected from patient records pre- and post-chemotherapy. Data were analyzed using SPSS version 21. Paired t-tests was used to compare mean differences of Hematological and biochemical parameter values. A p-value < 0.05 was considered statistically significant.

Results: Results: The most of patients were female (64%, n=32), presented with advanced-stage disease (at Stage III/IV) (54 %, n=27), and had breast cancer (22%, n=11). Post-chemotherapy, the analysis revealed no statistically significant alterations in the majority of hematological parameters, including hemoglobin, white blood cells, and platelets ($P > 0.05$). For biochemical profiles, a significant decrease in Alanine Aminotransferase (ALT) (mean differences: 3.97 U/L ; $P=0.035$) and a significant increase in Alkaline Phosphatase (ALP) (mean differences: -12.21 U/L ; $P=0.036$) were observed. Other liver and kidney function parameters showed no significant changes.

Conclusion: The advanced stage at diagnosis highlights critical gaps in early detection and cancer awareness in Yemen. The absence of significant hematological toxicity suggests that chemotherapy protocols may be adapted, potentially through dose modifications, to mitigate risks in a setting with limited supportive care. These findings underscore the urgent need for context-specific treatment guidelines and strengthened healthcare infrastructure to improve oncology outcomes in Yemen.

Keywords: Chemotherapy, Cancer, Hematological Toxicity, Biochemical Profiles, Yemen.

1. Introduction

Cancer, a disease characterized by the uncoordinated and invasive proliferation of abnormal cells, remains a leading cause of mortality worldwide [1, 2]. While a significant proportion of cancer deaths are preventable through early intervention and treatment, the management of the disease often involves aggressive therapies like chemotherapy [3].

Chemotherapy, a cornerstone of cancer treatment, utilizes cytotoxic agents to target rapidly dividing cancer cells. However, its mechanism of action is non-selective, also damaging healthy cells with high turnover rates, such as hematopoietic progenitor cells in the bone marrow and parenchymal cells of vital organs [1]. This collateral damage frequently leads to significant treatment-related toxicities, manifesting as alterations in hematological and biochemical profiles. Common consequences include myelosuppression—resulting in anemia, neutropenia, and thrombocytopenia—as well as hepatotoxicity and nephrotoxicity [5, 6]. These alterations can precipitate life-threatening complications like severe infections and hemorrhage, and if not managed properly, can lead to dose reduction, treatment delays, or even therapeutic failure [7].

To mitigate these risks, routine monitoring through Complete Blood Count (CBC), Liver Function Tests (LFTs), and Kidney Function Tests (KFTs) is a standard of care before and after chemotherapy cycles. This practice allows for the timely detection and management of adverse effects [3].

Despite the critical importance of this monitoring, there is a notable lack of localized data characterizing these profile changes in cancer patients within Yemen, specifically in the Dhamar Governorate. A recent study from Ibb, Yemen, highlighted the high prevalence of hematologic malignancies but also underscored the general lack of information on cancer in the country [8]. Another study from Yemen focused on baseline hematological parameters in breast cancer patients and explicitly called for further research to evaluate these parameters during chemotherapy [9]. Therefore, this study aims to fill this gap by providing essential medical knowledge about the hematological and biochemical alterations in cancer patients undergoing chemotherapy at the Dhamar General Hospital Authority (DGHA).

2. Methods

Study Design and Setting

A hospital-based observational study was conducted at the Oncology Unit of the DGHA in Dhamar Governorate, Yemen, from April to June 2024.

Study Population and Sampling

The study population consisted of all Yemeni cancer patients who received chemotherapy at the DGHA

oncology unit during the study period. A non-probability convenience sampling method was employed. From an approximate pool of 180 patients, 54 were initially recruited. After applying inclusion and exclusion criteria, a final sample of 50 patients with complete medical data was included in the analysis. The mean age of participants was 45.92 ± 19.04 years.

Inclusion and Exclusion Criteria

Inclusion Criteria: Adult cancer patients who provided informed consent to participate, and had complete medical records containing the required pre- and post-chemotherapy laboratory data.

Exclusion Criteria: Patients were excluded if they had incomplete laboratory data, discontinued follow-up before completing the treatment cycle, or had pre-existing comorbidities known to significantly affect hematological or biochemical profiles (e.g., chronic liver or kidney disease).

Data Collection

Data were collected using a pre-tested, structured questionnaire. The researcher conducted direct interviews to gather socio-demographic information (e.g., age, gender, residence) and relevant medical history. Clinical data, including cancer type, stage, and laboratory results (CBC, LFTs, KFTs), were extracted from patient medical records. Laboratory parameters were recorded at two time points: Pre-chemotherapy: Values obtained before the initiation of a chemotherapy cycle. Post-chemotherapy: Values obtained after receiving the treatment, typically before the next scheduled dose.

Statistical Analysis

Data were analyzed using SPSS Statistics version 21 (IBM Corp., USA). Descriptive statistics (frequencies, percentages, mean \pm standard deviation) were used to summarize demographic and clinical characteristics. A paired samples t-test was employed to compare the mean differences between pre- and post-chemotherapy hematological and biochemical parameters. A p-value of < 0.05 was considered statistically significant.

Ethical Considerations

Ethical approval was obtained from the Department of Medical Laboratory at Al-Hikma University and the administration of the Dhamar General Hospital Authority. The purpose and nature of the study were explained to all participants, and written informed consent was secured from each individual prior to their enrollment.

3. Results

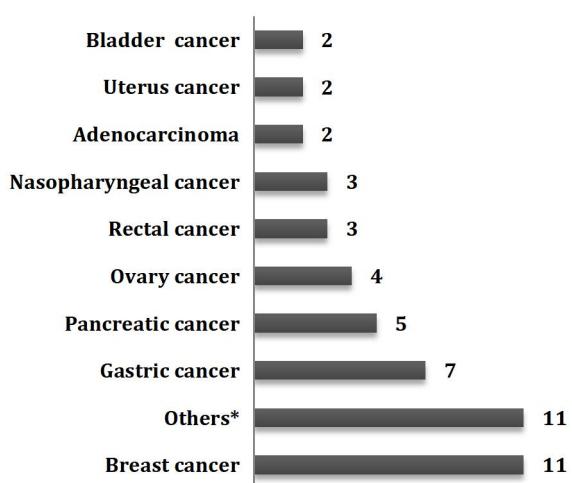
Socio-Demographic Characteristics of patients

A total of fifty (50) Yemeni cancer patients were included in the study. The mean age of the participants was 45.92 ± 19.04 years, with an age range of 3 to 75 years.

As shown in Table 1, the cohort was predominantly female (64.0%), married (72.0%), and resided in urban areas (60.0%). A significant proportion of participants were illiterate (44.0%). In terms of occupation, the majority were housewives (60.0%), followed by government employees (14.0%), farmers (10.0%), and laborers (6.0%). The remaining 10% were children. The reported monthly family income ranged from 50,000 to 200,000 Yemeni Rial, with a mean \pm SD of 132,000 \pm 31,558.17 Rial. Notably, over half of the patients (54.0%) reported a monthly income of 150,000 Rial, and all participants stated that their income was insufficient to cover their needs.

Table 1: Socio-Demographic Characteristics of Cancer Patients

Variable	n	%
Total number	50	
Sex (Female)	32	64
Residence (Urban)	30	60
Social status		
Married	36	72
Single	13	26
Divorced	1	2
Age/year		
<5	1	2
5-14	4	8
15-24	2	4
25-44	15	30
45-65	20	40
>65	8	16
Patients' education		
Illiterate	22	44
Reading & writing	13	26
Primary	5	10
Secondary	3	6
High school	3	6
University and above	4	8
Patients' occupation		
Housewife	30	60
Worker (laborer)	3	6
Government Employee	7	14
Farmer	5	10
Unemployed**	5	10
Family monthly income/ YR		
(mean \pm SD)	132,000 \pm 31,558	


*Age category based on CDC classification. YR: Yemeni Rial

** including the children

Clinical and Medical History of Patients

The analysis of cancer type frequency revealed a diverse oncological profile among the 50 participants. Breast cancer was the most predominant single type, accounting for 22% (n=11) of all cases. An equal proportion (22%) was represented by a collection of other, less frequent cancers. Gastric cancer was the second most common specific diagnosis, comprising 14% (n=7) of the cohort, followed by pancreatic cancer (10%) and ovarian cancer (8%). The remaining cases included rectal cancer (6%), nasopharyngeal cancer (6%), adenocarcinoma (4%), uterine cancer (4%), and bladder cancer (4%). This distribution highlights a significant burden of breast and gastrointestinal malignancies within the studied patient population, Figure 1.

Regarding cancer staging at diagnosis, stage III was the most prevalent (42.0%), followed by stage II (40.0%). A minority of patients (20.0%) reported a family history of cancer. The duration of cancer diagnosis and chemotherapy treatment varied among participants, as detailed in Table 2.

Others: Squamous cell carcinoma, leukemia, Colon cancer, Neuroblastoma, Eye cancer, Glioblastoma, Lung cancer, Bone cancer, Liver cancer

Figure 1: Distribution of patients by Cancer Types/site

Table 2 Medical history of cancer patients (n=50)

Variable	n	%
Family history of cancer		
Yes	10	20
No	40	80
Relative level (If yes of family history)		
Father	2	4
Mother	2	4
Brother	4	8
Uncle	2	4
None	40	80
Cancer stage		
I-Stage	3	6
II-Stage	20	40
III-Stage	21	42
VI-Stage	6	12
Cancer duration/ year		
< one	9	18
Two	19	38
Three	12	24
> Three	10	20
Chemotherapy duration/ month		
1-4	14	28
5-8	14	28
9-12	8	16
> 12	14	28
Receiving travel of chemotherapy dose/ week		
One	11	22
Two	8	16
Three	29	58
Four	2	4

Comparison of Hematological and Biochemical Profiles in Pre- and Post -Chemotherapy of study subjects

The comparison of hematological and biochemical parameters before and after chemotherapy is summarized in Table 3. The analysis revealed minor, non-significant changes in all measured hematological parameters following treatment ($P > 0.05$ for all parameters). On the other hand, the mean values of most CBC levels were within the normal reference values Pre- and Post-chemotherapy whereas, the mean of Hb, PCV

and RBC values were slightly lower than the normal reference values. For biochemical profiles, a significant decrease in Alanine Aminotransferase (ALT) (the mean differences: 3.97 U/L ; $P = 0.035$) and a significant increase in Alkaline Phosphatase (ALP) (the mean differences: -12.21 U/L; $P = 0.036$) were observed. Other liver and kidney function parameters showed non-significant changes ($P > 0.05$).

Table 3: Comparison of Hematological and Biochemical Profiles in Pre- and Post- Chemotherapy, Dhamar General Hospital Authority, Oncology unit, Yemen

Parameter	Descriptive statistics				Reference value	Paired differences		
	Pre-treatment		Post-treatment			Pre and -Post treatment		
	Mean	SD	Mean	SD		Mean	t	P
Hematological Profiles								
Hb	11.78	1.92	11.76	2.31	M: 13.0-18.0 g/dl F: 11.5-16.5 g/dl	0.01	0.05	0.963
PCV	34.95	5.81	35.44	5.67	M: 45-54% F: 37-47%	-0.49	-0.67	0.504
RBCs	4.33	0.88	4.29	1.13	M: 5.4-6.3 10 ¹² /L F: 5.0-6.0 10 ¹² /L	0.05	0.38	0.705
MCV	80.18	8.41	80.10	8.99	77-96 fl	0.08	0.09	0.932
MCH	26.85	3.46	26.94	3.82	26-32 pG	-0.09	-0.26	0.798
MCHC	32.27	4.59	32.24	2.45	32-36 g/dl	0.03	0.04	0.964
Total WBC count	7.66	18.35	7.63	19.73	4-10 X 10 ³ /L	0.03	0.07	0.948
Neutrophil	53.30	18.75	54.44	16.73	40-70%	-1.14	-0.37	0.712
Lymphocyte	32.24	13.77	31.54	14.12	20-45%	0.70	0.26	0.794
Monocytes	10.16	12.87	10.00	11.02	2-10%	0.16	0.11	0.910
Eosinophil	4.72	3.25	4.78	3.10	1-6%	-0.06	-0.10	0.923
Basophil	0.08	0.40	0.04	0.20	0-1%	0.04	0.69	0.493
Platelets	280.82	124.46	282.44	135.99	150-450 X 10 ³ /L	-1.62	-0.10	0.919
Biochemical Profiles								
Creatinine	0.58	0.47	0.62	0.55	0.3-1.2 mg/dL	-0.04	-1.00	0.321
Urea	25.06	26.63	24.22	10.63	10-50 mg/dL	0.84	0.26	0.797
GOT-AST	25.40	12.72	23.32	11.84	Up to 46 U/L	2.08	0.95	0.346
GPT-ALT	23.73	16.19	19.76	11.48	Up to 46 U/L	3.97	2.17	0.035
ALP	77.75	36.48	89.96	33.29	M: 40-129U/L F: 35-104 U/l	-12.21	-2.15	0.036
Bil-total	0.48	1.10	0.54	1.06	Up to 1.0 mg/ dL	-0.06	-1.07	0.288
Bil-Direct	0.32	1.10	0.32	0.98	Up to 0.25 mg/ dL	0.00	0.03	0.979
Bil-Indirect	0.20	0.14	0.23	0.24	Up to 0.75 mg/ dL	-0.03	-0.78	0.436

Degree of freedom = 49. Data are expressed as mean \pm SD, Mean at $P < 0.05$ with 95% confidence interval. SD: Standard Deviation; t: the paired t-test, M:Male, F:Female.

4. Discussion

This study addressed the problems related to chemotherapy especially on hematological and biochemical profile and their alterations in pre- and post-chemotherapy of cancer patients in Dhamar governorate, Yemen, providing important knowledge and essential medical information about this public health problem in this area. Although, the findings of the present study showed an non-significant slightly decrement of Hb, RBC count levels; and an non-significant slightly increment of PCV levels in post-chemotherapy compared to pre-chemotherapy. However, a recent study showed a significant decrement of Hb, RBC count, and PCV in post-chemotherapy compared to pre-chemotherapy [1]. On the other hand, the mean hematological values of Hb, PCV, and RBC count were noted to be lower than the normal reference values in Pre- and Post-Chemotherapy in the current study.

The current study showed an non-significant decrement of WBC count in post-chemotherapy compared to pre-chemotherapy. This finding was consistent with findings of a previous study done by Mughal., (2004) [10] and findings of a recent study done by Wondimneh et al, (2021) [1]. The results of the latter, was statistical significance. Accordingly, cancer patients develop an infection after taking chemotherapy, because of the reduction of WBCs that are important for fighting against infection [11]. The current study showed a non-significant decrement of lymphocyte levels in post-chemotherapy compared to pre-chemotherapy. This finding was consistent with the findings reported also by Wondimneh et al. indicating to that chemotherapy reduces circulating lymphocyte levels, where T and B cells significantly decreased after completion of chemotherapy. Similarly , the findings of the current study showed an non-significant slightly increment of neutrophil and platelets count in post-chemotherapy compared to pre-chemotherapy. This finding was not

consistent with findings of other studies showed that neutrophil [1, 12] and platelet levels significantly decreased in post-chemotherapy compared to pre-chemotherapy [1, 13]. Although, the findings of the current study showed an non-significant slightly increment of neutrophil level and platelets count; and a non-significant decrement of lymphocyte level. However, lymphocyte, neutrophil and platelets levels were noted to be within the normal reference ranges in Pre- and Post-chemotherapy

Although, the present study showed that a non-significantly increased of creatinine levels in post-chemotherapy than pre- chemotherapy. However, a previous studies stated also that creatinine levels significantly increased in post-chemotherapy than pre-chemotherapy due to impaired formation or impaired excretion of urine [14]. It has been shown that chemotherapy can lead to necrosis of kidney cells. This damage is clinically manifested as increased levels of creatinine [15]. In contrast, a recent study showed that a non-significant decrement of creatinine levels in post-chemotherapy than pre- chemotherapy [1]. On the other hand, findings of this study showed that the mean values of creatinine were within the normal reference range in Pre-chemotherapy and Post- Chemotherapy. This was in agreement with a study carried out on breast cancer patients, stated that the mean creatinine value was observed to be within the normal reference range during the different courses of chemotherapy as well as there was no specific alterations was observed in creatinine level [16].

The present study indicated the urea levels was within the normal reference ranges whether Pre-chemotherapy or Post-chemotherapy. similar findings were observed in a study of [17] evaluated the biochemical profile of Breast cancer patients. It indicated also metabolite levels slightly increases and decreases were mostly within the normal reference range. The present study showed a significant decrement of Alanine transaminase (ALT) levels in post-chemotherapy compared to pre-chemotherapy($P < 0.05$). This was not consistent with the reported findings in two similar studies. The first study reported that the serum levels of ALT significantly increased [18] in post- chemotherapy than pre-chemotherapy. While, the second study reported that the serum levels of ALT non-significantly increased also in post- chemotherapy than pre-chemotherapy indicating, that the increments of ALT levels may be attributed to an inflamed condition of the liver, severe scarring of the liver, or death of liver tissue that resulted from the chemotherapy [19].

Findings of this study showed that Aspartate transaminase (AST) levels non-significantly declined in post-chemotherapy compared to pre-chemotherapy . This was not consistent with findings of other studies showed that AST levels increased in post-chemotherapy compared to pre- chemotherapy [11, 19]. The current study showed that the ALP and Bil-total, and Bil-Indirect levels non-significantly increased in post-chemotherapy compared to pre-chemotherapy.

This study has several limitations. The single-center design and relatively small sample size may limit the generalizability of the findings across Yemen. The use of convenience sampling could also introduce selection bias. Furthermore, the lack of detailed data on the specific chemotherapeutic regimens, exact dosages, and use of supportive medications limits a deeper interpretation of the hematological findings.

5. Conclusions

Laboratory analysis demonstrated a distinct pattern of chemotherapy-induced alterations, with no statistically significant hematological toxicities observed post-treatment, suggesting possible protocol adaptations to mitigate risks in a setting with constrained supportive care. However, significant biochemical changes were evident, particularly in liver function parameters, with a marked decrease in ALT and increase in ALP levels. These results highlight the necessity for context-specific treatment protocols and enhanced monitoring systems to optimize oncology care in Yemen, and early detection programs to improve overall cancer management outcomes.

Acknowledgments

The authors would like to express their sincere gratitude to the administration of the Dhamar General Hospital Authority for granting the ethical approval and facilitating the data collection process. We are deeply indebted to the staff of the Oncology Unit for their invaluable cooperation and support throughout the study period.

Our profound appreciation goes to all the cancer patients who participated in this study. Their willingness to share their experiences and data was essential for this research, and we acknowledge their strength and contribution to advancing medical knowledge in Yemen.

We also extend our thanks to the Department of Medical Laboratory at Al-Hikma University for their academic support and guidance.

Finally, we acknowledge the efforts of all individuals who contributed directly or indirectly to the completion of this work.

Data Availability

All data relevant to this study are presented in this manuscript. Additional datasets are available from the corresponding author upon reasonable requests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit section.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Consent for publication

Not applicable.

References

- Wondimneh B, Anekere Dasappa Setty S, Gebregzabher Asfeda G, Belay E, Gebremeskel G, Baye G. Comparison of Hematological and Biochemical Profile Changes in Pre- and Post-Chemotherapy Treatment of Cancer Patients Attended at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia 2019: A Retrospective Cohort Study. *Cancer Manag Res*. 2021 Jan 22;13:625-632. doi: 10.2147/CMAR.S274821. PMID: 33519241; PMCID: PMC7837543.
- Kassie TD, Yimenu BW, Baye Temesgen G, Shimelash RA, Abneh AA. Differences in the count of blood cells pre-and post-chemotherapy in patients with cancer: a retrospective study (2022). *Frontiers in Medicine*. 2025 Apr 16;12:1485676.
- Gralow J, Ozols RF, Bajorin DF, Cheson BD, Sandler HM, Winer EP, Bonner J, Demetri GD, Curran Jr W, Ganz PA, Kramer BS. Clinical cancer advances 2007: major research advances in cancer treatment, prevention, and screening—a report from the American Society of Clinical Oncology. *Journal of Clinical Oncology*. 2008 Jan 10;26(2):313-25.
- Hyzam D, Zou M, Boah M, Saeed A, Li C, Pan S, Zhai J, Wu LJ. Health information and health-seeking behaviour in Yemen: perspectives of health leaders, midwives and mothers in two rural areas of Yemen. *BMC Pregnancy Childbirth*. 2020 Jul 14;20(1):404. doi: 10.1186/s12884-020-03101-9. PMID: 32664887; PMCID: PMC7359610.
- Pullakanam T, Mannangatti M, Ramesh A, Nekkala R, Vijayalakshmi P. Chemotherapy on hematological and biochemical parameters in breast cancer patients. *Caspian J Intern Med*. 2024 Oct 19;16(1):132-140. doi: 10.22088/cjim.16.1.132. PMID: 39619746; PMCID: PMC11607108.
- Ingole S, Vasdev N, Tekade M, Gupta T, Pawar B, Mhatre M, Prasad AG, Tekade RK. Toxic effects of cancer therapies. In *Public Health and Toxicology Issues in Drug Research* 2024 Jan 1 (pp. 353-379). Academic Press.
- Ochocinski D, Dalal M, Black LV, Carr S, Lew J, Sullivan K, Kissoon N. Life-threatening infectious complications in sickle cell disease: a concise narrative review. *Frontiers in Pediatrics*. 2020 Feb 20;8:38.
- Al-Mohani SK, Almuraisi BA. Hematologic malignancies among patients at Al-Amal Oncology Center in Ibb Governorate, Yemen. *J Sur & Surgic Proce*. 2025;3(3):1-6.
- Abbas AB, Al-Gamei S, Naser A, Al-Oqab A, Alduhami K, Al-Sabri M, Al-Qasem A, Gharama M, Mohammed A, Ahmed S, Al-Ghal M. Comparison of Hematological Parameters and the Associated Factors Among Women with and without Breast Cancer: A Case-Control Study. *Breast Cancer (Dove Med Press)*. 2024 Dec 10;16:877-885. doi: 10.2147/BCTT.S497313. PMID: 39678025; PMCID: PMC11645957.
- Mughal TI. Current and future use of hematopoietic growth factors in cancer medicine. *Hematological Oncology*. 2004 Sep;22(3):121-34.
- Kaplan BW, Ph D. Priority medicines for Europe and the world “A public health approach to innovation “ update on 2004 background paper written by Warren Kaplan background paper 6. *Cancer Ther*. 2013;(April):5-62.
- Adekunle M. Prevalence, Risk Factors and Predictors of Adverse Outcomes of Febrile Neutropenia in Oncology Patients on Chemotherapy at the Red Cross War Memorial Children's Hospital: A Three Year Retrospective Study.
- Padma R, Sundaresan S. Haematological and biochemical changes in pre and post-treatment of buccal mucosa carcinoma patients. *Int J PharmSci Res*. 2016;7(7):3002-3006
- Siena S, Giannetta C. Optimizing management of neutropenia and anemia in cancer chemotherapy. *Hematol*. 2003;48:39-S47.
- Moore DC. Drug-induced neutropenia: a focus on rituximab-induced late-onset neutropenia. *Pharmacy and therapeutics*. 2016 Dec;41(12):765.
- Chauhan P, Yadav R, Kaushal V, and Beniwal P. Evaluation of serum biochemical profile of breast cancer patients. *Int J Med Res Health Sci*. 2016, 5(7):1-7
- Devi LI, Ralte L, Ali MA. Serum Biochemical Profile of Breast cancer patients. *European Journal of Pharmaceutical and Medical Research*. 2015;2(6):210-214.
- HYOGO UO, Science GS of NA and. Disaster Nursing in a Ubiquitous Society Care Package for Cancer Patients In Times of Handbook of Self-Managing. Side Effects of Chemotherapy in Times of Disaster. In: *Handbook of Self-Managing Side Effects of Chemotherapy in Times of Disaster*; 2006;1-26.
- Ramadori G, Cameron S. Effects of systemic chemotherapy on the liver. *Annals of hepatology*. 2010 Apr 1;9(2):133-43.