EVALUATION OF GROUND WATER QUALITY IN AI-BAIDH FIELD, HODIEDA CITY, YEMEN

Badr. I. Abdul-Razzak*, Atta . I.A** and Khalil. A. Khalil** *Dep. of Chemistry, Faculty of Education, Hodeidah University, Yemen **Dep. of Medical Laboratory, Faculity of Medicine Science Hodeidah University, Yemen

Abstract:

Ground water is the main source for drinking water in Hodieda city, Yemen. This study discusses the chemical and physical characteristics of nineteen ground water wells in the Al-baidh field. Thus, the measurement of water quality parameters such as electrical conductivity EC, total dissolved solids TDS, pH, turbidity, color, total alkalinity, total hardness TH, NO3-,SO42-, PO43-, Cl-,Na+, K+, Ca2+ and Mg2+ in addition to Mn, Cu, Fe and Cr were expressed. The results indicate unacceptable levels of TDS, Cl-, Na+, Ca2+ and Mg2+comparing with the maximum tolerable concentration given by World Health Organization (WHO) and Yemen standard (YS). Elsewhere, the measurement of SO42- and NO3- exceeded the allowable values given by WHO and Y.S for most the samples which can be attributed to the nature of the geological and chemical structure of soil in Albaidh field. In this study, measurement of the concentration for elements such as Cr, Fe, and Mn were carried out, the results indicate that the values for this elements were within the allowable ranges.

In this paper the concepts of star- refinement and strongly star- refinement of covering are extended to fuzzy topological space in the sense of Chang, basic theorem for covering dimension of normal fuzzy topological space is proved . Also, the small inductive dimension function is extended to fuzzy topological space, and some results for this inductive dimension in Chang^{**} space are obtained .

Introduction

Yemen is the poor countries in water resources, where the groundwater is the main source of drinking water, which depends on the rainwater to offset the shortage resulting from the depreciation in the stock of the underground water wells(Qahtan.et al.,2005). Indeed the water is important element in nature, it is related to human health, and the quality of water can be affected by different kinds of pollutions, chemical, biological and physical pollution. In recent years the pollution of aquatic environment has been increased noticeably due to the increase of human activities, the characteristics of any water body may indicate its level of pollution(Eryani.et al.,1991).

The main source of drinking water in Hodieda city is only ground water, there are nineteen governmental wells in the Albaidh field, which are located about 10 Km north-east of the city, along the north bank of the Al-qutai valley. The main aim of this study is to investigate the quality of the ground water multiple samples were collected from the wells, main chemical and physical water quality characteristics were determined analytically.

Experimental

The water samples were collected using 1L polyethylene

23 Page – The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

container after cleaned by acid (6MHNO₃), the pH meter and digital conductometeter from (HACH) has been used for direct measurement of water samples. All samples were stored in cool environment (4°C) to prevent the vaporization and biodegradation, the temperature at the time of determination was 37-41°C.In this study we used spectrophotometer is used and reagents from (HACH) to determine the (Cu, Fe, Cr, Mn, NO_3^- , SO_4^{-2-} and PO_4^{-3-} .

The ions Na^+ and K^+ were determined by flam emission spectroscopy ,while the remaining alkalinity and ions(Ca^{2+},Mg^{2+} and Cl^-) were analyzed by titration method (Digittal titrator)

Results and discussion

The values of the various parameters for nineteen wells in Tables (1a,1b,1c and 1d) were summarized.

Table(1a):The analytical results of ground watersamples(Continue).

Parameters	WHO	VS			wells		
i ulumeters	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	1	2	3	4	5
T °C			39	40	41	37	39
E.C µScm ⁻¹		450-2500	3100	3640	5100	4340	3680
TDS mg/L	1000	650-1500	1860	2184	3060	2604	2208
рН	6.5-8.5	6.5-9	7.75	7.35	7.21	7.35	7.25
Turbidity(NUT)	5		4	1	Nil	2	7
Color	15		15	4	Nil	9	28

The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008 | 24 | Page

Parameters	WHO	VS		s wells				
1 ar anicter s		15	1	2	3	4	5	
Cl ⁻ mg/L	250	200-600	630	825	1435	1050	815	
T.H mg/L	500	100-500	425	565	1030	670	530	
Ca ²⁺ mg/L	200	75-200	66	86	412	100	74	
Mg ²⁺ mg/L			26.4	84.0	97.2	100.8	82.8	
T.Alkalinity mg/L	200-250		140	120	625	125	135	
NO ₃ ⁻ mg/L	50	10-50	70	80.08	90	65	56	
SO ₄ ²⁻ mg/L	250	200-400	500	600	530	450	410	
Na ⁺ mg/L	200	Max400	450	636	860	730	650	
K ⁺ mg/L		8-12	2.72	2.55	2.40	2.30	2.30	
PO ₄ ³⁻ mg/L			0.30	0.18	0.16	0.34	0.35	
Fe	0.3	0.3-1	0.01	Nil	0.02	0.01	0.05	
Cu	1	0.5-1	0.01	Nil	0.16	0.2	0.01	
Mn	0.1		0.01	0.01	0.02	0.01	0.01	
Cr	0.05		0.01	0.01	0.02	0.01	0.01	

Table(1b): The analytical results of ground water samples (Continue).

Parameters	WHO	VS	wells				
i arameters	WIIO	15	6	7	8	9	10
T °C			41	39	39	39	39
E.C µScm ⁻¹		450-2500	3230	3050	2880	2900	2880
TDS mg/L	1000	650-1500	1938	1830	1728	1740	1728
pH	6.5-8.5	6.50-9	7.22	7.50	7.30	7.84	7.71
Turbidity(N.U.T)	5		3	4	Nil	1	Nil

| 25 | Page – The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

Parameters	WHO	VS	wells					
1 arameters	wiio	15	6	7	8	9	10	
Color	15		19	11	Nil	5	Nil	
Cl ⁻ mg/L	250	200-600	730	655	615	610	605	
T.H mg/L	500	100-500	455	410	400	425	450	
Ca ²⁺ mg/L	200	75-200	74	60	165	175	74	
Mg ²⁺ mg/L			64.8	62.2	94.0	250	63.6	
T.Alkalinity mg/L	200-250		270	125	120	50	122	
NO ₃ ⁻ mg/L	50	10-50	64.24	65.00	80.52	62.42	56.32	
SO ₄ ²⁻ mg/L	250	200-400	420	360	420	440	500	
Na ⁺ mg/L	200	Max400	560.5	448	510	520	625	
K ⁺ mg/L		8-12	2.85	2.70	2.70	2.60	2.80	
PO ₄ ³⁻ mg/L			0.05	0.38	0.12	0.39	0.16	
Fe	0.3	0.3-1	Nil	0.03	0.07	0.03	0.03	
Cu	1	0.5-1	Nil	0.01	0.03	0.05	0.06	
Mn	0.1		0.01	0.01	0.01	0.02	0.02	
Cr	0.05		0.01	0.01	0.01	0.02	0.01	

Table(1c): The analytical results of ground water samples (Continue).

Parameters	WHO	VS	wells				
i ur uniceers		10	11	12	13	14	15
T °C			39	40	39.5	39	41
E.C µScm ⁻¹		450-2500	2490	2790	2560	2370	2700
TDS mg/L	1000	650-1500	1494	1674	1536	1422	1620
pH	6.5-8.5	6.50-9	7.80	7.74	7.55	7.45	7.34
Turbidity(N.U.T)	5		Nil	2	2	Nil	Nil

The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008 | 26 | Page

Parameters	WHO	VS	wells					
i arameters	WIIO	15	11	12	13	14	15	
Color	15		Nil	11	12	Nil	Nil	
Cl ⁻ mg/L	250	200-600	510	610	540	505	640	
T.H mg/L	500	100-500	375	445	435	375	375	
Ca ²⁺ mg/L	200	75-200	62	63.2	76	66	58	
Mg ²⁺ mg/L			52.8	104	58.8	50.4	55.2	
T.Alkalinity mg/L	200-250		123	110	125	126	125	
NO ₃ ⁻ mg/L	50	10-50	58.32	69.69	80.00	71.00	52.80	
SO ₄ ²⁻ mg/L	250	200-400	400	530	290	290	290	
Na ⁺ mg/L	200	Max400	430	462	370	345	460	
K ⁺ mg/L		8-12	2.80	2.70	2.60	2.45	2.77	
PO ₄ ³⁻ mg/L			0.33	0.41	0.20	0.23	0.21	
Fe	0.3	0.3-1	0.24	0.03	0.01	0.01	0.02	
Cu	1	0.5-1	0.01	0.04	0.06	0.08	Nil	
Mn	0.1		0.01	0.02	0.01	Nil	0.01	
Cr	0.05		0.01	0.02	Nil	0.01	0.01	

Table(1d): The analytical results of ground water samples

Parameters	WHO	VS		W	ells	
i ur uniceers		10	16	17	18	19
T °C			41	40	40	40
E.C µScm ⁻¹		450-2500	2760	2510	2590	2370
TDS mg/L	1000	650-1500	1656	1506	1556	1422
pН	6.5-8.5	6.5-9	7.36	7.39	7.31	7.40
Turbidity(N.U.T)	5		Nil	1	Nil	Nil
Color	15		Nil	5	Nil	Nil
Cl ⁻ mg/L	250	200-600	625	540	535	507

| 27 | Page – The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

Parameters	WHO	VS	wells				
1 arameters			16	17	18	19	
T.H mg/L	500	100-500	410	390	405	375	
Ca ²⁺ mg/L	200	75-200	66	60	64	64	
Mg ²⁺ mg/L			58.8	57.6	58.8	51.6	
T.Alkalinity mg/L	200-250		120	125	120	125	
NO ₃ ⁻ mg/L	50	10-50	54.56	65.12	64.68	81	
SO ₄ ²⁻ mg/L	250	200-400	380	370	390	350	
Na ⁺ mg/L	200	Max400	450	430	400	345	
K ⁺ mg/L		8-12	2.7	2.7	2.7	3.2	
PO4 ³⁻ mg/L			0.27	0.28	0.39	0.25	
Fe	0.3	0.3-1	0.05	Nil	0.02	0.01	
Cu	1	0.5-1	Nil	Nil	0.01	0.08	
Mn	0.1		0.01	Nil	0.01	0.01	
Cr	0.05		0.01	0.01	0.02	0.01	

The examined ground water samples characterized by slight to moderately alkaline (pH values ranged from 7.21to7.84 and very high of TDS from (1422-3060) in comparison with the maximum tolerable concentration given by WHO(World Health Organization,2003) and YS, this can be attributed to the nature of the geological and chemical structure of soil in Al-baidh field, which follows the geological feature of Tihama plain near the Red Sea coast. The electrical conductivity ranged from (2370-5100) μ Scm⁻¹, these values are related to total dissolved solids. Water hardness the amount

The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008 | 28 | Page

of dissolved calcium and magnesium in water expressed in terms of calcium carbonate. The values of the hardness analysis ranged from (375-1030) mg/L. All wells have values within the permissible limit of WHO and YS, except well (2)565 mg/L, well(3)1030 mg/L, well(4)640 mg/L and well(5)530 mg/L which have values greater than the permissible limits, the average hardness water was more than 300 mg/L and this is considered very hard according to the guide line of WHO and Y.S.

Turbidity and color of ground water wells showed the permissible limits values, except well (5) and (6) were 28 units and 19 units respectively. Alkalinity of water may be due to the presence of one or more ions, these include hydroxides, carbonates and bicarbonates, the values of alkalinity were in the range(90-140) mg/L, and were within the permissible limits given by (WHO) except well(6) with a value 270 mg/L showed a close value to the maximum allowable 250 mg/L.

Almost all natural waters contain chloride, but in this work the values of chloride ion for nineteen ground water wells ranged (507-1435) mg/L, the values in wells (3and4) were 1435 mg/L and 1030 mg/L respectively, more than five times the permissible limit value of(250) mg/L, while the rest of the wells average was almost twice of the allowable value,

²⁹ Page – The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

can be attributed to feature of Al-baidh field On the other hand, sodium ion showed range values(345-860) mg/L ,due to high concentration of chloride ion, while potassium ion range values(2.3-2.85) mg/L were found below the guidelines for drinking water given by Yemen Standard (YS).The phosphate ion gave range value (0.05-0.41) mg/L, while nitrate ion in the investigated samples were found to be in the range (52.8-81.0) mg/L, these results were relatively higher than the permissible limit given by (WHO) and (YS), it is a dangerous indicator of pollution especially in children less than six months ages who drink water containing nitrate, symptoms include shortness of breath and blue-baby syndrome (GLWQD,Janury 2007).

Furthermore, the range of sulaphate ion in the sample was (290-600) mg/L, for more than half of the wells, the average concentration were almost twice the permissible limit (250) mg/L given by (WHO), this can be attributed to the presence of gypsum components in the surrounding soil.

The concentration of trace metals Fe, Mn, Cu and Cr ions in the drinking water samples are presented in Tables (1a,1b,1c and 1d) the lowest and highest levels ranged between(0.00-0.24) mg/L Fe,(0.00-0.02) mg/L Mn, (0.00-0.16) mg/L Cu and (0.00 -0.02) mg/L Cr , these results were below the WHO and Y.S permitted limits.

Conclusion

- 1- The characteristics of examined ground water samples showed very high TDS ,TH ,chloride ion and sodium ion concentration compared by the permissible limits given by WHO and YS range.
- 2- The concentration of nitrate ion was relatively higher than WHO and Y.S guide lines
- 3- The average concentration of sulphate ion was almost twice the permissible limit given by (WHO)
- 4- The results indicate that, the water is very hard classification
- 5- The results of heavy metals were below the WHO permitted limits

Acknowledgment

The authors would like to thank the water locality institution, Hodieda branch for their assistance in the survey. We would like to express Mr.Yhya. Motahher for helpful comments.

References

- 1. Qahtan Yehya and A.M.Al-AsbahiI,2005,Water Resources Information in Yemen,WGEnv,International work session on water tatistics,Vienna,June 20-22.
- Eryani,M.,Ba-issa,A.and Ai-Shuibi,Y.1991,Growndwater
 Pollution in the Sana,a Basin:preliminary Appraisal
 Environmental Protection Council,sana,a,Republic of Yemen
- http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/in dex.htm
- **31** Page The Scientific Journal of The Faculty of Education vol.(1), No (5) June 2008

- 4. World Health Organization,2003,Guidelines for drinking water quality Geneva(WHO/SDE/WSH 03-04.
- Gallatin Local Water Quality District(GLWQD), 2007,Nitrate in Ground Water,215 W.Mendenhall,SuitE-Conrth Ouse Annex BozemanMT59715