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Abstract: 

        Many issues related to water resources 
require the solution of optimization 
problems. Optimization problems can be 
quite difficult such as the calibration of 
many conceptual watershed models. 
Conceptual watershed models are 
formulated using empirical relationships 
between hydrological variables observed in 
nature or field experiments .The success of 
automatic calibration depends mainly on the 
choice of optimization method. Most early 
attempts to calibrate watershed models have 
been based on local-search optimization 
methods. Local optimization methods are 
not designed to handle the presence of 
multiple regions of attraction, multi-local 
optima, insensitivities and parameter 
interdependencies, and other problems 
encountered in the calibration of watersheds 
models. It is therefore imperative that global 
optimization procedures that are capable of 
dealing with these various difficulties be 
employed. 

In this study, one local search optimization method and one global 
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search method are used to calibrate the parameters a simple ten-

parameter rainfall-runoff model. The local search method is the well 

known Rosenbrock's direct search method; the global search method is 

the newly developed Shuffled Complex Evolution (SCE) method . The 

results revealed that Shuffle Complex Evolution optimization method is 

more superior to Rosenbrok’s direct search method. The results 

confirmed the finding of many watershed modellers about the 

dependency of Rosenbrock’s method on the choice of initial search 

points. It further adds that Rosenbrock’s method is only effective when 

the initial search points are taken within 5 % or less from the true 

optimum parameter set. The results indicate that a proper choice of 

optimization methods can enhance the possibility of obtaining unique and 

conceptually realistic parameter estimate. 

 

Keywords : Watershed models calibration; Rainfall-Runoff models ; 
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هناك العديد من القضايا المتعلقة بالموارد المائية تتطلب الحلول  - :ملخص البحث 

مسائل الأمثلية يمكن أن تكون معقدة مثل معايرة العديد من النماذج التصورية . المثلى

ذج التصورية لأحواض التصريف يتم صياغتها بأستخدام النما. لأحواض التصريف

  . العلاقات التجريبية بين المتغيرات الهيدرولوجية الملاحظة في الطبيعة أو التجارب الحقلية

نجاح المعايرة الأتوماتيكية يعتمد في الأساس على اختيار طريقة   
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دت في معظم المحاولات السابقة لمعايرة أحواض التصريف أعتم. الأمثلية

طرق الأمثلية الموضعية لم تصمم للتعامل . الأساس على طرق الأمثلية الموضعية

مع وجود المناطق المتعددة الانجذاب والمناطق المثلى الموضعية وانعدام الحساسية 

وكذالك التعامل مع الصعوبات الأخرى التي ، والاعتماد المتبادل للوسائط 

لذا فقد بات ضروريا . ض التصريفيتم مواجهتها عند معايرة نماذج أحوا

وملحا احلال وسائل وطرق الأمثلية العالمية القادرة على التعامل مع هذه 

  .الصعوبات المتعددة

في هذه الدراسة احدى طرق الأمثلية للبحث الموضعي وأخرى للبحث   

العالمي تم استخدامها لمعايرة وسائط نموذج حوض تصريف مبسط يحتوي على 

طريقة البحث الموضعية المستخدمة هي تلك المعروفة جيدا . عشرة وسائط

والمسماه بطريقة روسينبروك للبحث المباشر ، أما طريقة البحث العالمية فهي 

  . تلك المبتكرة حديثا والمعروفة بطريقة تحسين وخلط اموعات

أظهرت النتائج المستحصلة بأن طريقة تحسين وخلط اموعات كانت أكثر 

أكدت نتائج هذه الدراسة . رعة عن طريقة روسينبروك للبحث المباشرتميزا وس

ماجاء في تقارير الكثير من الباحثين العاملين في حقل نمذجة أحواض التصريف 

  .بأعتماد طريقة روسينبروك للبحث المباشر على القيم الأولية المختارة للبحث 

ريقة روسينبروك تضيف النتائج المستحصلة من هذه الدراسة بأن فعالية ط

%  5للبحث المباشر تكون فقط عند اختيار القيم  الأولية للوسائط في حدود 

أظهرت النتائج المستحصله بأن . أو أقل من القيم المثلى العالمية لتلك الوسائط

الاختيار المناسب لطريقة الأمثلية يمكن أن يعزز من فرص الحصول على تحديد 

  .     نموذج دقيق ومنطقي لقيم الوسائط لأي
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1.   Introduction 
  
The advent of powerful desktop computer has allowed the 

modeling of hydrologic systems to develop to the point where 
sophisticated multi-parameter models are now used by many 
in government agencies, consulting firms and industry to 
decide water management issues. The complexity of these 
models makes meaningful calibration difficult, if not 
impossible, for non-expert users. The need to find the optimal 
solution to a problem is virtually encountered in every area of 
human endeavor in areas such as mathematics, engineering 
design, economic, medicine, telecommunication, river 
forecasting and many others. Two broad approaches of 
mathematical rainfall-runoff models for application to a given 
watersheds. In the first, values are estimated from available 
knowledge of the processes or from measurements of physical 
properties of the watershed. In the second approach, parameter 
values are found by a systematic optimization technique. The 
intention is to achieve the  best possible reproduction of 
observed runoff in terms of some chosen objective function. 
The reliability of operational conceptual rainfall-runoff models 
used in forecasting is highly dependent on the adequacy of the 
calibration procedures employed. In many applications that are 
met in practice, a highly accurate solution is neither possible 
nor feasible. Particularly, it may be impossible because of 
uncertainties and inaccuracies in the underlying model or data, 
or it may it may be infeasible due to the unacceptable high 
computational effort required to attain it. Taking in view the 
above mention facts, this study was aimed to assess the 
performance and effectiveness of global and local optimization 
algorithm in locating global optimum starting from any 
population of points and also to compare their convergence 
speed. 
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2.   Concept of Calibration  
 
To obtain the best match between simulated outputs from 

the model and observed outputs from the watershed, the 
parameters of the model need to be tuned. The process of 
tuning model parameters is called model calibration. The 
calibration process requires a procedure to evaluate the success 
of a given calibration and another procedure to adjust the 
parameter estimates for the next calibration. 

In general, the object of calibration is to minimize the 
difference between observed and simulated flows. The 
mathematical representation of this difference is called 
objective function.  There are two broad approaches to 
watershed model calibration: manual and automatic. 

 
2 . 1   Manual Calibration 

 
In manual approach, trial and error procedures are used to 

estimate model parameters. Model knowledge and a multitude 
of model performance measures (i.e., objective functions) 
along with human judgment and visual aids combine to 
determine the best guesses for model parameters. This process 
is less prone to the effect of the noises in calibration data, but 
it demands a high level of understanding of the model physics. 

  
2 . 2   Automatic Calibration 

 
In automatic approach, model calibration problem is 

formulated as an optimization problem so computer based 
optimization methods can be employed to locate the optimal 
model parameters. This process takes advantage of a myriad of 
optimization methods available and relies on computer speed 
and power to perform the mundane task of finding the optimal 
parameters with respect to a given objective function (s). 
Automatic calibration procedures can be generalized for use 
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on different models and can be easily grasped by no means a 
trivial exercise at all.  

The automatic estimation technique consists of three 
elements: (1) objective function                    (2) optimization 
algorithm and  (3) calibration data. 

 
Much research has been done to study one or more of these 

factors (Ibbitt 1972; 1983; Kuzera 1983 a&b;  Sorooshian and 
Gupta 1983, 1985 ; Gan and Bitfu 1996 ; among others). 

 
3.   Local Optimization 
 

Sophisticated optimization methods have been used widely 
to calibrate the parameter of watershed models since the very 
beginning of the digital watershed-modeling era. Most early 
attempts to calibrate watershed models have been based on 
local-search optimization methods (Dawdy and O’Donnel 
1965; Nash and Sutcliffe 1970; Ibbitt 1971; Jonston and 
Pilgrim 1976; Pickup 1977; Sorooshian and Gupta 1983; 
Sorooshian and Gupta 1985; Hendrickson et al. 1988; etc ). 

The popularity of local-search methods is mostly due to the 
fact that the computer capability was very limited and local 
search methods required relatively small computer processing 
units (CPU).  There are two broad categories of local search 
methods: direct type and Gradient type. 

 
3 .1   Direct Type 

 

      Direct type methods (e.g., the Axis-Rotating of 
Rosenbrock (1960), the Pattern Search (PS) method of Hooke 
and Jeeves (1961) and the Simplex method of Nelder and 
Mead (1965) all place few limitations on the form of model 
equations, and require only that knowledge of the objective 
function values be available over the feasible parameter space. 
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3 . 1 . 1   Rosenbrock's  Method 
 

       This method has been developed by Rosenbrock's in 
(1960 ). The method aims to find the minimum or maximum 
of multivariable, unconstrained and constrained nonlinear 
functions. In this method, the coordinate system is rotated in 
each stage of minimization in such a manner that the first axis 
is oriented towards the locally estimated direction of the valley 
and all other axis are made mutually orthogonal and normal to 
the first one.  
 
4.   Optimization Methods Comparative Studies 

 
Ibbitt (1971) conducted the first comprehensive comparative 

study of different optimization methods for calibration of the 
Stanford Watershed Model (SWM)  (Crawford and Linsley 
1966) and the O, Donell Model (Dawdy and O' Donnel 1965). 
Eight local search optimization methods and one global search 
method were included in the study. The local search methods 
included direct type methods such as the Rosenbrock's Method 
(Rosenbrock 1960) and gradient type methods such as 
Powell’s conjugate direct search method (Powell 1964); the 
global search method was a simple random search method 
(Karnopp 1963). He reported that the effectiveness of local 
search methods was highly dependent on the choice of initial 
search points, the Rosenbrock's method was the most effective 
among the different local search methods he tested. He pointed 
out that Karnopp’s random search method was unable to 
obtain good estimate of the global optimum, even though it 
might be helpful in finding good starting points for a 
subsequent local search. 

Johnston and Pilgrim (1976) used the simplex method 
(Nelder and Mead  1965) and      a gradient method known as 
the Davidon method (Fletcher and Powell, 1963) to calibrate 
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the Bougton model. They reported that both methods failed to 
locate a true set of optimal parameters. Pickup (1977) was 
unable (using an automatic approach) to obtain the “true 
“values of the Bougton model’s parameters, even under ideal 
condition (created by assuming a perfect set of parameters and 
using synthetic data). 

Ibbitt and O’Donnel(1971) and Johnston and Pilgrim (1976) 
list the following features of conceptual Rainfall-Runoff 
models and their automatic calibration procedures as the 
primary reasons for the above mention problems: 
(i) Interdependence between model parameters 
(ii) Indifference of the objective function to the values of 
“inactive” (threshold type) parameters 
(iii) Discontinuities of the response surface. 
(iv)  Presence of local optima due to the non-convexity of the 
response surface. 

Duan et al. (1992) conducted a detailed investigation into 
the problems associated with optimizing watershed model 
parameters.They employed an exhaustive girding method to 
examine the objective function and derivative surface of the 
SIXPAR model. 

Their findings are summarized as follows: 
(i) The parameter space contains several major regions of 
attraction into which a search strategy may converge 
(ii) Each major region of attraction contains numerous local 
minima. 
(iii) The objective function surface in the multi-parameter 
space is not smooth and may not even be continuous. The 
derivative is discontinuous and may vary in an unproductive 
manner throughout the parameter space. 
(iv) The parameter exhibits varying degrees of sensitivity and a 
great deal of nonlinear interaction and compensation near the 
region of global optimum. 

They have concluded that the combination of these features 
makes local-search methods inherently incapable of finding 
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the global optimal parameters for most of watershed models.  
 

5.   Global Optimization 
 
In practice, there are many problems that cannot be 

described analytically and many objective functions have 
multiple extrema. In these cases it is necessary to pose multi-
extremum (global) optimization problem where the traditional 
optimization methods are not applicable. One of the 
approaches to solve a global optimization problem that has 
become popular during the recent years is the use of the so-
called Shuffled Complex Evolution (SCE)  method (Duan et al 
1992), which is now widely use in many applications related to 
water resources problems. Other global optimization methods 
that are commonly used for calibration of watershed models 
are; Simulating Annealing (SA) ((Kirkpatrick et al. 1983) and 
Genetic Algorithm (Holland  1975). A considerable number of 
publications related to water resources are devoted to their use 
(Abdullah et al. 2000; Wang  1991; Savic & Walters 1997; 
Franchini & Galeati 1997). 

  
5.1   Shuffled Complex Evolution Method  

 
The shuffled complex evolution (SCE) method is a heuristic 

global optimization scheme that became quickly one of the 
most popular among water resources engineers. According to 
the algorithm, a random set of points is sampled and 
partitioned into complexes. Each of them is allowed to evolve 
in the direction of global improvement, using competitive 
evolution techniques based on the downhill simplex method. 
At periodic stages, the entire set of points is shuffled and 
reassigned to new complexes, to enable information sharing. 
The combination of competitive evolution and shuffling 
ensures that the information gained by each of the individual 
complexes is shared through the entire population. SCE  
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method is based on a synthesis of four concepts: 
(a) Combination of deterministic and probabilistic approaches 
(b) Systematic evolution of a complex of points spanning the 
parameter space, in the direction of the global improvement 
(c) Competitive evolution 
(d) Complex shuffling 
The first three concepts are drawn from existing 
methodologies that have been proven successful in the past 
including GA, simplex and CRS methods (Price 1983,1987; 
Nelder and Mead 1965; Holland 1975), while the last concept 
is newly introduced by Duan (1992).  
 
6.  Conceptual Rainfall-Runoff Model 

 
The model used was a simple ten-parameter conceptual 

rainfall-runoff (Abdulnoor , 2003). The model is based in on 
water balance of the land phase, the he major input 
requirements for this model are the hourly rainfall, potential 
evaporation and streamflow record and the                                        
main output from the model are hourly stream flow and peak 
flow rate. The general structure for this model is shown in Fig. 
1. 
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Fig. 1.  Structure of the model used in this study 
 
The model has ten parameters all are fitted by 

employing optimization technique. These parameters are; 
Holtan equation parameters, namely the intercept a, the 
slope n and the steady state constant infiltration rate fc, 
interflow coefficient Sc, maximum surface depression 
storage capacity Dmax, recession coefficient Kr; the 
Muskingum equation two parameters, x and k, Initial soil 
moisture storage capacity Sa  and the number of catchment 
wetted areas NA. These parameters are all shown with 
their upper and lower bound in table 1. 
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Table 1.  The model parameters with their upper and lower 
Bound 

 

Upper Bound Lower Bound 
 

Parameter 
 

0.9 0.08 a 
1.5 0.1 n 
3.8 1.27 fc (mm/hr) 
0.9 0.0 Sc 

30.0 10.0 
Dmax 

(mm) 
0.99 0.1 Kr 
7.0 0.0 K (hr) 
0.5 0.0 X 

141.3 0.0 Sai (mm) 
9.0 1.0 NA 

 
The data for the simulation example in this study are 

collected from one ephemeral semi arid catchment located 
at the central part of Jordan. These data were considered to 
some extent sufficient for fitting the model parameters at 
the test  catchment. The available hourly rainfall data and 
streamflow record along with other climatic variables were 
obtained for a period (1990 to 2001). Ten different storms 
are selected for fitting the model parameters . The storms 
are divided into two parts; the first for calibration and the 
second for validation. The storms used in calibration are 
inserted into the model continuously so that the resulted 
optimal parameters will represent the average for all 
events. The model was fitted to the runoff time series of 
the five selected events using the least square objective 
function.  
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7.  Model Calibration Using Rosenbrock's Direct Search 
Method  

 
The program code for unconstrained Rosenbrock's 

optimization method is taken from Kuester (1973). Some 
modification is made to restrict the parameters within the 
given limits so that upper and lower bounds of the 
parameters can not be violated.  

The input requirements for this program are : number of 
independent variables, maximum number of times program 
is to evaluate objective function, maximum number of 
time axis are to be rotated, number of successive failures 
encountered in all directions before termination, error in 
objective function to be reached before program 
terminates, control variable determining step size to be 
used after each rotation of axis, scaling factor for step size 
increases (α), scaling factor for step size reduction (β) and 
control variable to change the operation mode to 
optimization or evaluation.The program starts by picking a 
set of initial values already assigned for each parameter. 
These values are within the specified bounds. Initial step 
size of 0.1 and 0.01 are used in operation of the program. 
The chosen values of α and β were 3.0 and 0.5. 

 
The program terminates when the following condition 

are met: 
(1) The difference between current and previous objective 
function is equal to or less than convergence criteria, 
which is here (10-4). 
(2) Number of successive failure encountered is equal to 
or greater than maximum allowable number of failure 
(here, it is taken as 100). 
(3) Number of times the objective function is evaluated is 
equal to or greater than maximum allowable number (it is 
taken here equal to 10000 iterations). 
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To test the ability of Rosenbrock's direct search method 
in locating the global optima from a set of initial search 
points we chose sex different sets and we use theme as an 
initial input values for the model parameters. An equal 
number of program runs were also carried out for all the 
selected parameter sets. 

In the first run of the program , the parameter set was 
taken closer to the lower bound of parameters. In the 
second run initial parameter set was taken equal to the 
output set resulted from the first run. This process is 
followed consequently in both third and fourth runs. In the 
fifth run the chosen parameter set was taken closer to the 
upper parameters bound whereas, in the last run the initial 
parameter set was taken equal to the intermediate values 
of the upper and lower bounds of the parameters. These 
procedures are clearly illustrated in table 2. 
 
8.  Model Application Using Shuffle Complex Evolution 
Global Optimization Method 

 
The computer code for this optimization method has been 

provided by Dr.Q.Duan ( the developer of this method). 
The input requirements for this program are as follows : 

(1) Maximum number of trials allowed ( adopted equal to 
90000 trials). 
(2) Number of shuffling loop in which the criterion must 
improve by the specified percentage      ( taken equal to 19 
shuffling loop). 
(3) Percentage by which the criterion value must change in the 
specified number of shuffling loops ( adopted equal to .001). 
(4) Number of complexes used for optimization search 
(adopted equal to 8 complexes). 
(5) Random seed used in optimization search ( adopted equal to  
10). 
(6) Flag for setting the control variables of the SCE algorithm 
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(adopted equal  to 0 for optimization and 1 for validation). 
(7) Number of points in each complex ( adopted equal to 21). 
(8) Number of points in each sub-complex (adopted equal to 
11). 
(9) Number of evolution steps taken by each complex before 
next shuffling (adopted equal to 21). 
(10) Minimum number of complexes required for optimization 
search, if the number of complexes is allowed to reduce as the 
optimization search proceeds (adopted equal to 8). 
(11) Flag on weather to include the initial points in the starting 
population (equal to “1” if initial points are to be included and 
“0” if initial point is not to be included; here it is adopted equal 
to “1”). 
(12) Print-out control flag ( equal “0” to print out the best 
estimate of the global optimum at the end of each shuffling 
loop, or equal to “1” to printout every point in the entire 
sample [here it is adopted equal to “0”] ). 
(13) Initial estimates of the parameters to be optimized with 
their upper and lower bounds. 

 
Three stopping criteria are used to terminate SCE-UA these 

are as follows : 
(1) The objective function does not change by 0.01 % in 19 
consecutive shuffling loops. 
(2) The change in objective function and parameters values is 
less 0.0001. 
(3) The number of iterations is greater than 90000 iterations. 
 
 To investigate the effectiveness and efficiency of SCE 
method, procedures similar to those implemented under the 
application of Rosenbrock's direct search method were 
conducted. This is clearly presented in table 2.  
 A detailed investigation on the effect of selecting different 
initial random seed incorporated with numerous consecutive 
number of program runs was conducted. The average number 
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of function evaluations that is required by the program to 
converge toward the global optimum was also estimated for 
each consecutive program run, the values are all provided in 
table 3. The values of objective function associated with each 
run of the program are also provided in the same table.  
 A detailed study  on interdependence between the model 
parameters was conducted. The effect of varying the initial 
random seed on the final optimum set of the parameter was 
also studied. Ten consecutive program runs were carried out. 
The global optimum parameter set resulted from each run was 
obtained and is presented in table 4. for the seek of 
comparison. 
 
Table 2.  Performance and Effectiveness of  Rosenbrock’s and 
shuffle complex evolution optimization  
 

 
Initial parameter set  at the 

start of run 

Rosenbrock’s direct search 
optimization method 

Shuffle complex evolution global 
optimization method 

Objective 
function 
( m3/s ) 

Number of 
function 

evaluations 

Objective 
function 
( m3/s ) 

Number of function 
evaluations 

(1) Values are taken closer to 
the lower bound . 

8663.31 2177  6240 12532 

(2) The output from the first 
run is taken as initial set for 
the current run. 

8662.19 11 6240 12532 

(3) The output from the 
second run is taken as initial 
set for the current run. 

8662.19 11 6240 12532 

(4) The output from the third 
run is taken as initial set for 
the current run. 

8662.19 11  6240 12532 

(5) Values are taken closer to 
the upper bound. 

185313 2 6240 12532 

(6) Values are taken 
intermediate of the upper 
and lower bound. 

185313 2 6240 12532 
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9.  Results Discussions 
  
Generally, the experimental results revealed that the 

performance of SCE optimization method has proven to be 
more effective, efficient and robust than Rosenbrock’s 
direct search method. This interested fact is clearly 
illustrated in table 2.    

Unlike Rosenbrok’s direct search, Shuffle Complex 
Evolution optimization method was found insensitive to any 
change in the values of initial search points, since at all runs 
the resulted objective function remains unchanged. 
Rosenbrock’s direct search optimization method has been 
found more dependent on the choice of initial search points. In 
all program runs Rosenbrock's direct search failed to locate the 
global optimum objective function and the corresponding 
global optimum parameter set, it is found  likely to climb at 
local minima.  

Rosenhrock’s direct search method was found capable in 
locating the global optimum only when the initial search points 
were taken very close to optimum parameters values (i.e., the 
initial search points values are within 5 % or less of the 
optimum parameter  set).  

The effectiveness of SCE method is measured by its 
capability to locate the global optimum starting from any 
initial population of points. Table 3. Illustrate that in most of 
consecutive program run, there has been very minor variation 
in the final value of objective function, and hence we can 
observe that changing the initial sets of random seed would 
have a very slight effects on the final global optimum. Table 3. 
Shows another performance indicator for SCE method called; 
the reliability or robustness of optimization algorithm, which is 
measured by the number of successes in finding the global 
optimum, or at least approaching it sufficiently closely. In all 
consecutive run, the number of success in finding the global 
optimum was much greater than number of failure. The 
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efficiency of SCE algorithm is measured also by the number of 
function evaluations needed, the SCE method was capable to 
locate the global optimum with a minimum number of iteration 
or function evaluations, the global optimum was approached in 
most of run with a number of iteration equal to one sixth of the 
maximum number of iteration fixed by the author see table 3. 

Parameters correlation was also studied when Shuffle 
Complex Evolution optimization is used in calibration. 
Table 4. shows the results of several consecutive model runs 
incorporated with different set of initial random seeds. It has 
been found that nearly all parameters have got very close 
values, and the effects of changing initial parameter set on the 
final optimal parameter set was very minor. It has been noted 
that slight improve could be achieved to the objective function 
obtained using SCE method. This could be realized when the 
optimum parameter set obtained by SCE method is taken as 
initial search points for Rosenbrock's direct search method. 
 
10.  Conclusions 

 
When the region of the parameters response surface contains 

one or more local optima just like the multiple extrema 

function of the model used in this study, Rosenbrock’s direct 

search optimization method has failed to locate the global 

optimum corresponding to the lowest objective function. It 

was found more dependent on the choice of the initial search 

points. Rosenbrock’s direct search method was found more 

effective, when initial search points are taken within 5 % or 

less from the true optimum. Shuffle Complex Evolution SCE 

optimization method has been found very successful in 
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locating the true optimum points corresponding to the lowest 

objective function. More-over, it was found insensitive to the 

choice of initial search points. Unlike Rosenbrock’s direct 

search method, which is also failed in obtaining the true global 

optimum parameters set, Shuffle Complex Evolution method 

was found more able to obtain true global optimum parameters 

set. The true global optimum parameters set obtained using 

SCE optimization method has been found slightly effected 

when a change is made to the values of initial search points. 

SCE found more reliable than Rosenbrock's direct search since 

the number of successes encountered in all program runs was 

greater than the number of failure encountered during the same 

runs. After extended analysis, the SCE algorithm was proved 

more effective, efficient and reliable than Rosenbrock's direct 

search algorithm. The findings obtained in this study are found 

identical with other findings obtained by numerous researchers 

which all concluded that global optimization algorithms are  

more powerful and superior than traditional local optimization 

algorithms. This has made a global optimization algorithm 

such as SCE  is now becoming the most widely used among 

hydrologists and water resources engineers. 
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Table 3.  Effect of using different set of initial random points on the final value of objective function 
obtained using SCE optimization method 

 
Average 

Number of 
Function 

Evaluations 
during the 

run 

Objective function Obtained with each run ( m3/s) 
 
 

Initial Random 
Seeds used 

 
 

Number of 
consecutive  
Program  

Runs 

T
enth R

un 

N
inth R

un
 

E
ighth R

un 

S
eventh 
R

un 

S
ixth R

un 

F
ifth R

un 

F
orth R

un
 

T
hird R

un
 

S
econd R

un 

F
irst R

un 

12532          6240 2 1 
16543         6240 7320 2,3 2 
15942        6240 6240 7320 2,3,5 3 
15120       6240 6240 6240 7320 2,3,5,7 4 
15384      6240 6240 6240 6240 7320 2,3,5,7,11 5 
15143     7330 6240 6240 6240 6240 7320 2,3,5,7,11,13 6 
15026    6240 7330 6240 6240 6240 6240 7320 2,3,5,7,11,13,17 7 
14633   6240 6240 7330 7320 6240 6240 6240 7320 2,3,5,7,11,13,17,19 8 
15200  6240 6240 6240 7330 7320 6240 6240 6240 7320 2,3,5,7,11,13,17,19,23 9 
15495 6240 6240 6240 6240 7330 7320 6240 6240 6240 7320 2,3,5,7,11,13,17,19,23,29 10 
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Table 4.  Effects of varying the initial random seed on the final optimum parameter set obtained 
using SCE optimization method 

 

Program  
Runs 

Initial 
Seed 
used 
with 

each run 

Optimum parameters values Number of 
function 

evaluations 
 a n fc Sc Dmax Kr K x 

 
Sai 

 
NA 

First 2 0.136 0.482 1.376 0.485 29.998 0.914 3.639 0.064 0.05 4.051 17768 
Second 3 0.499 0.624 1.405 0.499 10.021 0.902 3.289 0.002 15.275 5.24 15327 
Third 5 0.9 0.568 1.405 0.412 10 0.902 3.288 0.002 10.884 5.883 14731 
Fourth 7 0.654 0.393 1.432 0.772 18.757 0.908 2.751 0 11.08 6.105 12653 
Fifth 11 0.9 0.448 1.405 0.51 10.001 0.902 3.287 0.002 15.205 5.033 16440 
Sixth 13 0.478 0.432 1.377 0.442 27.029 0.914 3.636 0.065 0.004 4.695 13938 

Seventh 17 0.321 0.803 1.406 0.447 10.003 0.902 3.285 0.002 13.884 5.929 14324 
Eighth 19 0.265 0.598 1.406 0.639 10.001 0.902 3.285 0.002 19.372 5.97 11862 
Ninth 23 0.633 0.404 1.406 0.62 10.056 0.902 3.285 0.002 18.486 5.125 19675 
Tenth 29 0.454 0.481 1.406 0.608 10.002 0.902 3.285 0.002 18.756 5.499 18145 
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