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Abstract:

Many issues related to water resources
require the solution of optimization
problems. Optimization problems can be
quite difficult such as the calibration of
many conceptual watershed models.
Conceptual  watershed models  are
formulated using empirical relationships
between hydrological variables observed in
nature or field experiments .The success of
automatic calibration depends mainly on the
choice of optimization method. Most early
attempts to calibrate watershed models have
been based on local-search optimization
methods. Local optimization methods are
not designed to handle the presence of
multiple regions of attraction, multi-local
optima, insensitivities and parameter
interdependencies, and other problems
encountered in the calibration of watersheds
models. It is therefore imperative that global
optimization procedures that are capable of
dealing with these various difficulties be
employed.

In this study, one .ucal search optimization metlodl one global
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search method are used to calibrate the parametessmple ten-
parameter rainfall-runoff model. The local searcktmd is the well
known Rosenbrock's direct search method; the glebaich method is
the newly developed Shuffled Complex Evolution ($@kethod . The
results revealed that Shuffle Complex Evolutioniaptation method is
more superior to Rosenbrok’s direct search methdde results
confirmed the finding of many watershed modellersowt the
dependency of Rosenbrock’s method on the choicénitll search
points. It further adds that Rosenbrock’s methodnly effective when
the initial search points are taken within 5 % essl from the true
optimum parameter set. The results indicate tharaper choice of
optimization methods can enhance the possibilityla&ining unique and

conceptually realistic parameter estimate.

Keywords : Watershed models calibration; Rainfall-Runoff mlede
Global optimization; Local optimization
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1. Introduction

The advent of powerful desktop computer has allotined
modeling of hydrologic systems to develop to thenpwhere
sophisticated multi-parameter models are now usedény
in government agencies, consulting firms and ingus$o
decide water management issues. The complexityhe$et
models makes meaningful calibration difficult, ifotn
impossible, for non-expert users. The need to firedoptimal
solution to a problem is virtually encountered uewy area of
human endeavor in areas such as mathematics, engme
design, economic, medicine, telecommunication, rrive
forecasting and many others. Two broad approactes o
mathematical rainfall-runoff models for applicatitma given
watersheds. In the first, values are estimated femailable
knowledge of the processes or from measuremerpgbysical
properties of the watershed. In the second apprgashmeter
values are found by a systematic optimization tegren The
intention is to achieve the best possible reprodacof
observed runoff in terms of some chosen objectivection.
The reliability of operational conceptual rainfallnoff models
used in forecasting is highly dependent on the aaeg of the
calibration procedures employed. In many applicetithat are
met in practice, a highly accurate solution is maitpossible
nor feasible. Particularly, it may be impossiblecdngse of
uncertainties and inaccuracies in the underlyinglehor data,
or it may it may be infeasible due to the unacdaptdnigh
computational effort required to attain it. Takimgview the
above mention facts, this study was aimed to asHass
performance and effectiveness of global and lopthozation
algorithm in locating global optimum starting fromny
population of points and also to compare their eoggnce
speed.
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2. Concept of Calibration

To obtain the best match between simulated outfvata
the model and observed outputs from the watershisal,
parameters of the model need to be tuned. The gs00E
tuning model parameters is called model calibrati®he
calibration process requires a procedure to evalinat success
of a given calibration and another procedure taustdihe
parameter estimates for the next calibration.

In general, the object of calibration is to minimizhe
difference between observed and simulated flowse Th
mathematical representation of this difference wlled
objective function. There are two broad approaches
watershed model calibration: manual and automatic.

2 .1 Manual Calibration

In manual approach, trial and error proceduresuassl to
estimate model parameters. Model knowledge and [atuale
of model performance measures (i.e., objective tfans)
along with human judgment and visual aids combioe t
determine the best guesses for model parameteispiidctess
is less prone to the effect of the noises in catibn data, but
it demands a high level of understanding of the ehptysics.

2 .2 Automatic Calibration

In automatic approach, model -calibration problem is
formulated as an optimization problem so computaseb
optimization methods can be employed to locatedihkmal
model parameters. This process takes advantagegfiad of
optimization methods available and relies on compspeed
and power to perform the mundane task of findiregdptimal
parameters with respect to a given objective famct(s).
Automatic calibration procedures can be generalipeduse
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on different models and can be easily grasped byneans a
trivial exercise at all.

The automatic estimation technique consists of ethre
elements: (1) objective function (2) optimization
algorithm and (3) calibration data.

Much research has been done to study one or mdresé
factors (Ibbitt 1972; 1983; Kuzera 1983 a&b; Satman and
Gupta 1983, 1985 ; Gan and Bitfu 1996 ; among sjher

3. Local Optimization

Sophisticated optimization methods have been usddlyv
to calibrate the parameter of watershed modelsdine very
beginning of the digital watershed-modeling era.sMearly
attempts to calibrate watershed models have besedban
local-search optimization methods (Dawdy and O’Delnn
1965; Nash and Sutcliffe 1970; Ibbitt 1971; Jonstamd
Pilgrim 1976; Pickup 1977; Sorooshian and Gupta3198
Sorooshian and Gupta 1985; Hendrickson et al. 16889,

The popularity of local-search methods is mostlg tluthe
fact that the computer capability was very limitaxid local
search methods required relatively small computecessing
units (CPU). There are two broad categories odlleearch
methods: direct type and Gradient type.

3.1 Direct Type

Direct type methods (e.g., the Axis-Rotatingf
Rosenbrock (1960), the Pattern Search (PS) methbbake
and Jeeves (1961) and the Simplex method of Nedder
Mead (1965) all place few limitations on the formmodel
equations, and require only that knowledge of thgedaive
function values be available over the feasible ipatar space.
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3.1.1 Rosenbrock'sMethod

This method has been developed by Rosensraok
(1960 ). The method aims to find the minimum or maxm
of multivariable, unconstrained and constrained linear
functions. In this method, the coordinate systenotated in
each stage of minimization in such a manner thafitst axis
is oriented towards the locally estimated directbéthe valley
and all other axis are made mutually orthogonal rasrdnal to
the first one.

4. Optimization Methods Comparative Studies

Ibbitt (1971) conducted the first comprehensive parative
study of different optimization methods for calitiwa of the
Stanford Watershed Model (SWM) (Crawford and Lawysl
1966) and the O, Donell Model (Dawdy and O' Dort#85).
Eight local search optimization methods and onéajlsearch
method were included in the study. The local seanelthods
included direct type methods such as the Rosentsrivbithod
(Rosenbrock 1960) and gradient type methods such as
Powell's conjugate direct search method (Powell4)9he
global search method was a simple random searchonhet
(Karnopp 1963). He reported that the effectivenas$ocal
search methods was highly dependent on the chéicetial
search points, the Rosenbrock's method was the effestive
among the different local search methods he tebteghointed
out that Karnopp’s random search method was unsble
obtain good estimate of the global optimum, evevugf it
might be helpful in finding good starting pointsrf@
subsequent local search.

Johnston and Pilgrim (1976) used the simplex method
(Nelder and Mead 1965) and a gradient mekmmavn as
the Davidon method (Fletcher and Powell, 1963)dbbcate
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the Bougton model. They reported that both metHailisd to

locate a true set of optimal parameters. Pickupy{19vas
unable (using an automatic approach) to obtain “thee

“values of the Bougton model’'s parameters, evereumtkal

condition (created by assuming a perfect set adrpaters and
using synthetic data).

Ibbitt and O’Donnel(1971) and Johnston and Pilgil®76)
list the following features of conceptual RainfRllmoff
models and their automatic calibration procedursstlze
primary reasons for the above mention problems:

() Interdependence between model parameters

(i) Indifference of the objective function to thealues of
“inactive” (threshold type) parameters

(iif) Discontinuities of the response surface.

(iv) Presence of local optima due to the non-caityeof the
response surface.

Duan et al. (1992) conducted a detailed invesbgainto
the problems associated with optimizing watersheadeh
parameters.They employed an exhaustive girding adetb
examine the objective function and derivative stefaf the
SIXPAR model.

Their findings are summarized as follows:

() The parameter space contains several majoromegpf
attraction into which a search strategy may corwerg

(i) Each major region of attraction contains numes local
minima.

(i) The objective function surface in the mul@@meter
space is not smooth and may not even be continuthss.
derivative is discontinuous and may vary in an odpctive
manner throughout the parameter space.

(iv) The parameter exhibits varying degrees of ity and a
great deal of nonlinear interaction and compensatiear the
region of global optimum.

They have concluded that the combination of theatufes
makes local-search methods inherently incapablénding
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the global optimal parameters for most of waterghedels.
5. Global Optimization

In practice, there are many problems that cannot be
described analytically and many objective functiomsve
multiple extrema. In these cases it is necessapose multi-
extremum (global) optimization problem where theditional
optimization methods are not applicable. One of the
approaches to solve a global optimization probléat has
become popular during the recent years is the tiskeoso-
called Shuffled Complex Evolution (SCE) method éDwet al
1992), which is now widely use in many applicatioasted to
water resources problems. Other global optimizat@thods
that are commonly used for calibration of watersheatels
are; Simulating Annealing (SA) ((Kirkpatrick et 4/983) and
Genetic Algorithm (Holland 1975). A considerablewber of
publications related to water resources are devotddeir use
(Abdullah et al. 2000; Wang 1991; Savic & Walt&:i897,
Franchini & Galeati 1997).

5.1 Shuffled Complex Evolution Method

The shuffled complex evolution (SCE) method is artstic
global optimization scheme that became quickly ohehe
most popular among water resources engineers. Aicgpto
the algorithm, a random set of points is sampled an
partitioned into complexes. Each of them is allowe@volve
in the direction of global improvement, using cortipe
evolution techniques based on the downhill simpteethod.
At periodic stages, the entire set of points isffal and
reassigned to new complexes, to enable informagt@ring.
The combination of competitive evolution and shaffl
ensures that the information gained by each ofinb&/idual
complexes is shared through the entire populatSCE

| 41| Page-The Scientific Journal of The Faculty of Education- vol.(1), No (5) June 2008



method is based on a synthesis of four concepts

(a) Combination of deterministic and probabilistgproaches
(b) Systematic evolution of a complex of pointsrspag the
parameter space, in the direction of the globaranpment

(c) Competitive evolution

(d) Complex shuffling

The first three concepts are drawn from existing
methodologies that have been proven successfuhanpast
including GA, simplex and CRS methods (Price 198371
Nelder and Mead 1965; Holland 1975), while the Gamstcept
is newly introduced by Duan (1992).

6. Conceptual Rainfall-Runoff Model

The model used was a simple ten-parameter condeptua
rainfall-runoff (Abdulnoor , 2003). The model isdea in on
water balance of the land phase, the he major input
requirements for this model are the hourly rainfpbtential
evaporation and streamflow record and the
main output from the model are hourly stream flavd peak
flow rate. The general structure for this modeshewn in Fig.

1.
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Fig. 1. Structure of the model used in this study

The model has ten parameters all are fitted by
employing optimization technique. These parametees
Holtan equation parameters, namely the interceptha,
slope n and the steady state constant infiltratiate fc,
interflow coefficient Sc, maximum surface depressio
storage capacity Dmax, recession coefficient Krg th
Muskingum equation two parameters, x and k, Inigall
moisture storage capacity Sa and the number choagnt
wetted areas NA. These parameters are all showh wit
their upper and lower bound in table 1.
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Table 1. The model parameters with their upper and lower
Bound

Parameter Lower Bound Upper Bound

a 0.08 0.9

n 0.1 1.5

fc (mm/hr) 1.27 3.8

Sc 0.0 0.9
Dmax 10.0 30.0

(mm)

Kr 0.1 0.99

K (hr) 0.0 7.0

X 0.0 0.5
Sai (mm) 0.0 141.3

NA 1.0 9.0

The data for the simulation example in this studg a
collected from one ephemeral semi arid catchmecdtkd
at the central part of Jordan. These data wereidersd to
some extent sufficient for fitting the model pardaers at
the test catchment. The available hourly rainfiEta and
streamflow record along with other climatic varieblwere
obtained for a period (1990 to 2001). Ten differstdrms
are selected for fitting the model parameters . $togms
are divided into two parts; the first for calibmai and the
second for validation. The storms used in calilomatare
inserted into the model continuously so that theuled
optimal parameters will represent the average fbir a
events. The model was fitted to the runoff timeieerof
the five selected events using the least squarectbg
function.
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7. Model Calibration Using Rosenbrock's Direct Seah
Method

The program code for unconstrained Rosenbrock's
optimization method is taken from Kuester (1973pnte
modification is made to restrict the parametershwitthe
given limits so that upper and lower bounds of the
parameters can not be violated.

The input requirements for this program are : numndfe
independent variables, maximum number of times @y
Is to evaluate objective function, maximum numbédr o
time axis are to be rotated, number of successaeres
encountered in all directions before terminatiorroe in
objective function to be reached before program
terminates, control variable determining step siaebe
used after each rotation of axis, scaling factorsi@p size
increases(), scaling factor for step size reductids) @nd
control variable to change the operation mode to
optimization or evaluation.The program starts bgkmg a
set of initial values already assigned for eachapwater.
These values are within the specified bounds. dhitep
size of 0.1 and 0.01 are used in operation of tfog@m.
The chosen values of and3 were 3.0 and 0.5.

The program terminates when the following condition
are met:
(1) The difference between current and previousctiye
function is equal to or less than convergence gdfe
which is here (10-4).
(2) Number of successive failure encountered isaédo
or greater than maximum allowable number of failure
(here, it is taken as 100).
(3) Number of times the objective function is ewwkd is
equal to or greater than maximum allowable numineis(
taken here equal to 10000 iterations).
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To test the ability of Rosenbrock's direct searathod
in locating the global optima from a set of initig¢arch
points we chose sex different sets and we use treesran
initial input values for the model parameters. Agual
number of program runs were also carried out forttae
selected parameter sets.

In the first run of the program , the parameter wat
taken closer to the lower bound of parameters. Ha t
second run initial parameter set was taken equath&o
output set resulted from the first run. This pracas
followed consequently in both third and fourth rutrs the
fifth run the chosen parameter set was taken closehe
upper parameters bound whereas, in the last rumnttial
parameter set was taken equal to the intermediakees
of the upper and lower bounds of the parametergsé&h
procedures are clearly illustrated in table 2.

8. Model Application Using Shuffle Complex Evolutbn
Global Optimization Method

The computer code for this optimization method hasn
provided by Dr.Q.Duan ( the developer of this medho

The input requirements for this program are a®vadl :
(1)Maximum number of trials allowed ( adopted dgtm
90000 trials).
(2)Number of shuffling loop in which the criteriomust
improve by the specified percentage ( takemaktp 19
shuffling loop).
(3)Percentage by which the criterion value musinge in the
specified number of shuffling loops ( adopted eqaalO01).
(4)Number of complexes used for optimization Searc
(adopted equal to 8 complexes).
(5)Random seed used in optimization search ( adogqual to
10).
(6)Flag for setting the control variables of theESalgorithm
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(adopted equal to O for optimization and 1 foidegion).
(7)Number of points in each complex ( adopted Etpual).
(8)Number of points in each sub-complex (adoptedak to
11).

(9 Number of evolution steps taken by each comjblefore
next shuffling (adopted equal to 21).

(10) Minimum number of complexes required for opzation
search, if the number of complexes is allowed thuce as the
optimization search proceeds (adopted equal to 8).

(11) Flag on weather to include the initial poimghe starting
population (equal to “1” if initial points are teebncluded and
“0” if initial point is not to be included; hereid adopted equal
to “1").

(12) Print-out control flag ( equal “0” to print buhe best
estimate of the global optimum at the end of edulifing
loop, or equal to “1” to printout every point inethentire
sample [here it is adopted equal to “0"] ).

(13) Initial estimates of the parameters to berojzeed with
their upper and lower bounds.

Three stopping criteria are used to terminate S@Bhése
are as follows :
(1) The objective function does not change by 0®1n 19
consecutive shuffling loops.
(2) The change in objective function and parametatses is
less 0.0001.
(3) The number of iterations is greater than 90@€@tions.

To investigate the effectiveness and efficiency SCE
method, procedures similar to those implementedeuride
application of Rosenbrock's direct search methodrewe
conducted. This is clearly presented in table 2.

A detailed investigation on the effect of selegtuifferent
initial random seed incorporated with numerous eounsve
number of program runs was conducted. The averagder
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of function evaluations that is required by the gweon to
converge toward the global optimum was also eséthdbr
each consecutive program run, the values are alliged in
table 3. The values of objective function assodiatgh each
run of the program are also provided in the sarketa

A detailed study on interdependence between tbdem
parameters was conducted. The effect of varyinginitel
random seed on the final optimum set of the paramets
also studied. Ten consecutive program runs weneedaout.
The global optimum parameter set resulted from eanhwas
obtained and is presented in table 4. for the se&k
comparison.

Table 2. Performance and Effectiveness of Rosenbrock’s and
shuffle complex evolution optimization

Rosenbrock’s direct searchShuffle complex evolution global
optimization method optimization method

Initial parameter set at the

start of run Objective  Number of  Objective

function function function
(m3/s) evaluations  (m3/s)

Number of function
evaluations

(1) Values are taken closer to

the lower bound . 8663.31 2177 6240 12532

(2) The output from the first
run is taken as initial set for 8662.19 11 6240 12532
the current run.

(3) The output from the
second run is taken as initial 8662.19 11 6240 12532
set for the current run.

(4) The output from the third
run is taken as initial set for 8662.19 11 6240 12532

the current rui

(5) Values are taken closer to

the upper bound. 185313 2 6240 12532

(6) Values are taken
intermediate of the upper 185313 2 6240 12532

and lower bount
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9. Results Discussions

Generally, the experimental results revealed thed t
performance of SCE optimization method has prowebd
more effective, efficient and robust than Rosenki®c
direct search method. This interested fact is ¢year
illustrated in table 2.

Unlike Rosenbrok’s direct search, Shuffle Complex
Evolution optimization method was found insensitteeany
change in the values of initial search points, eiat all runs
the resulted objective function remains unchanged.
Rosenbrock’s direct search optimization method basn
found more dependent on the choice of initial de@ants. In
all program runs Rosenbrock's direct search fadddcate the
global optimum objective function and the correstnog
global optimum parameter set, it is found likebydimb at
local minima.

Rosenhrock’s direct search method was found capable
locating the global optimum only when the initiabsch points
were taken very close to optimum parameters values the
initial search points values are within 5 % or ledfsthe
optimum parameter set).

The effectiveness of SCE method is measured by its
capability to locate the global optimum startingpnir any
initial population of points. Table 3. Illustratkat in most of
consecutive program run, there has been very nvaoation
in the final value of objective function, and henge can
observe that changing the initial sets of randordse&ould
have a very slight effects on the final global ojtm. Table 3.
Shows another performance indicator for SCE metaiied,;
the reliability or robustness of optimization algiom, which is
measured by the number of successes in findinggkbieal
optimum, or at least approaching it sufficientlpsely. In all
consecutive run, the number of success in findiveg global
optimum was much greater than number of failuree Th
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efficiency of SCE algorithm is measured also byrtheber of
function evaluations needed, the SCE method waabbtao
locate the global optimum with a minimum numbeitefation
or function evaluations, the global optimum wasrapphed in
most of run with a number of iteration equal to sne¢h of the
maximum number of iteration fixed by the author sdde 3.
Parameters correlation was also studied when Shuffl
Complex Evolution optimization is used in calibmati
Table 4. shows the results of several consecutivdeimruns
incorporated with different set of initial randoreesls. It has
been found that nearly all parameters have got whrge
values, and the effects of changing initial paramset on the
final optimal parameter set was very minor. It bagn noted
that slight improve could be achieved to the olbyectunction
obtained using SCE method. This could be realizednthe
optimum parameter set obtained by SCE method isntals
initial search points for Rosenbrock's direct seanethod.

10. Conclusions

When the region of the parameters response suci@uains
one or more local optima just like the multiple rexta
function of the model used in this study, Rosenksodirect
search optimization method has failed to locate ghabal
optimum corresponding to the lowest objective fiorct It
was found more dependent on the choice of theairstarch
points. Rosenbrock’s direct search method was fowode
effective, when initial search points are takenhwit5 % or
less from the true optimum. Shuffle Complex EvauotiSCE

optimization method has been found very successiful
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locating the true optimum points correspondinghe owest
objective function. More-over, it was found inséivel to the
choice of initial search points. Unlike Rosenbracldirect
search method, which is also failed in obtaining tiime global
optimum parameters set, Shuffle Complex Evoluticgthod
was found more able to obtain true global optimarameters
set. The true global optimum parameters set oldairseng
SCE optimization method has been found slightlyect#d
when a change is made to the values of initialcbeqoints.
SCE found more reliable than Rosenbrock's diremtcbesince
the number of successes encountered in all prognaswas
greater than the number of failure encounterechduhe same
runs. After extended analysis, the SCE algorithns waved
more effective, efficient and reliable than Rosechkls direct
search algorithm. The findings obtained in thiglgtare found
identical with other findings obtained by numeroesearchers
which all concluded that global optimization algbms are
more powerful and superior than traditional logalimization
algorithms. This has made a global optimizationoatgm
such as SCE is now becoming the most widely useoihg

hydrologists and water resources engineers.
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Table 3. Effect of using different set of initial randgeoints on the final value of objective fun
obtained using SCE optimization method

Objective function Obtained with each run ( m3/s) NAV(

ur

Number of T g 5 n @ L Z @ Fur
consecutive Initial Random 4 S s 5 = 5 Z % Z 5 3 Eval
Program Seeds used g - 2 32 2 ®» >3 3 P 3 dui
Runs - c > > > > = 5 > 5 r

1 2 6240 1

2 2,3 7320 6240 1¢

3 2,3,5 7320 6240 6240 1f

4 2,3,5,7 7320 6240 6240 6240 1f

5 2,3,5,7,11 7320 6240 6240 6240 6240 1f

6 2,3,5,7,11,13 7320 6240 6240 6240 6240 7330 1f

7 2,3,5,7,11,13,17 7320 6240 6240 6240 6240 7330 6240 1f

8 2,3,5,7,11,13,17,19 7320 6240 6240 6240 7320 7330 6240 6240 14

9 2,3,5,7,11,13,17,19,23 7320 6240 6240 6240 7320 7330 6240 6240 6240 1f

10 2,3,5,7,11,13,17,19,23,29%320 6240 6240 6240 7320 7330 6240 6240 6240 6240 1f




Table 4. Effects of varying the initial random seed oa fimal optimum parameter set obtai
using SCE optimization method

Initial

Seed Optimum parameters values Numbfer

Program functio

Runs us_ed evaluatic
with

each run a n fc Sc Dmax Kr K X Sai NA

First 2 0.136 0.482 1376 0.485 29.998 0.914 3.639.064 0.05 4.051 177

Second 3 0.499 0.624 1.405 0.499 10.021 0.902 3.289002 15.275 5.24 153

Third 5 0.9 0.568 1.405 0.412 10 0.902 3.288 0.0020.884 5.883 147

Fourth 7 0.654 0.393 1.432 0.772 18.757 0.908 2.7510 11.08 6.105 126!

Fifth 11 0.9 0.448 1.405 051 10.001 0.902 3.28700Q. 15.205 5.033 164

Sixth 13 0.478 0.432 1377 0.442 27.029 0914 3.63B065 0.004 4.695 139

Seventh 17 0.321 0.803 1.406 0.447 10.003 0.902 853.20.002 13.884 5.929 14:

Eighth 19 0.265 0598 1.406 0.639 10.001 0.902 B3.280.002 19.372 5.97 118

Ninth 23 0.633 0.404 1.406 0.62 10.056 0.902 3.286.002 18.486 5.125 196

Tenth 29 0.454 0.481 1406 0.608 10.002 0.902 3.285002 18.756 5.499 181
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