ON R^h-TRIRECURRENT FINSLER SPACES

By:F.Y. A. Qasem
Dept. of Mathematics, College of Education
University of Aden, Aden Prov., Yemen.

And A. A. Muhib Dept. of Mathematics, College of Education University of Aden Aden Prov., Yemen.

E-mail: moheb20052000@yahoo.com

Abstract:

The concept of recurrent curvature of an n-dimensional Riemannian space was extended to a Finsler space by A. Moór ([7],[8],[9]). Shalini Dikshit [3] defined the birecurrent Finsler space and F.Y.A.Qasem [10] defined the generalized birecurrent Finsler space and their properties considering the Cartan's curvature tensor $R_{ikh}^{i}(x,y),(y=\dot{x})$. The object of the present paper is to study trirecurrent Finsler space considering the Cartan's curvature tensor $R_{ikh}^{i}(x,y)$.

1. INTRODUCTION

Let $F_n = (M_n, F(x, y))$ be a Finsler space on a differentiable space M_n , equipped with the fundamental function F(x, y). We denote the fundamental metric tensor

$$(1.1) g_{ij}(x,y)\frac{1}{2}\dot{\partial}_i\dot{\partial}_j F^2(x,y), \dot{\partial}_i := \frac{\partial}{\partial y^i}.$$

The (h)hv-torsion tensor C_{ijk} defined by Makoto Matsumoto[4]

$$(1.2) C_{ijk} = \frac{1}{2} \dot{\partial}_i g_{jk} = \frac{1}{4} \dot{\partial}_i \dot{\partial}_j \dot{\partial}_k F^2.$$

This tensor satisfies the following identities

(1.3) (a)
$$C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$$
,
(b) $C_{ik}^i y^j = C_{ki}^i y^j = 0$.

The (v)hv-torsion tensor C_{jk}^i is the associate tensor of C_{ijk} and is defined by

(c)
$$C_{ik}^h := g^{hj}C_{iik}$$
.

The unit vector l^i in the direction of y^i is given by

$$(1.4) l^i := \frac{y^i}{F} .$$

For an arbitrary vector field X^i , Cartan deduced ([1],[2])

$$(1.5) X_{|k}^{i} := \partial_{k} X^{i} - \left(\dot{\partial}_{r} X^{i}\right) G_{k}^{r} + X^{r} \Gamma_{rk}^{*i}.$$

The function Γ_k^{i} and G_k^r are defined by

(1.6) (a)
$$\Gamma_{rk}^{*i} := \Gamma_{rk}^{i} - C_{mr}^{i} \Gamma_{sk}^{m} y^{s},$$
(b)
$$G_{k}^{r} = \Gamma_{sk}^{*r} y^{s}.$$

The process of covariant differentiation known as h-covariant differentiation (Cartan's second kind covariant differentiation). Makoto Matsumoto ([4],[5]) calls this derivative as h-covariant derivative.

The metric tensor g_{ij} and the associative metric tensor g^{ij} are covariant constant with respect to the above process, i.e.

(1.7) (a)
$$g_{iik} = 0$$
 and (b) $g_{ik}^{ij} = 0$.

The h-covariant derivative of the vector y^i vanish identically, i.e.

$$(1.8) y_{|k}^{i} = 0.$$

The process of h-covariant differentiation defined above commute with the partial differentiation with respect to y^j according to

$$(1.9) \qquad \dot{\partial}_{j}\left(X_{|k}^{i}\right) - \left(\dot{\partial}_{j}X^{i}\right)_{|k} = X^{r}\left(\dot{\partial}_{j}\Gamma_{rk}^{*i}\right) - \left(\dot{\partial}_{r}X^{i}\right)P_{jk}^{r}.$$

The Cartan curvature tensor k_{nk}^{i} defined by

(1.10) (a)
$$k_{nk}^{i} := \partial_{k} \Gamma_{hr}^{*i} + \dot{\partial}_{l} \Gamma_{rk}^{*i} G_{h}^{l} + \Gamma_{mk}^{*i} \Gamma_{hr}^{*m} - k / h^{*}$$
.

This tensor satisfies the following identity (which is one of Bianchi identities)

(b)
$$k_{jkh}^{i} + k_{hjk}^{i} + k_{khj}^{i} = 0.$$

Also the above tensor satisfies the following relation

$$(1.11) k_{jkh}^{i} y^{j} = H_{kh}^{i} ,$$

where

k/h means the subtraction from the former term by interchanging the indices k and h

Page | 59 | The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

(1.12)
$$H_{kh}^{i} := \partial_{h} G_{k}^{i} + G_{k}^{r} G_{rh}^{i} - h/k.$$

Matsumoto Makoto calls it h(v)-torsion tensor. This tensor is positively homogeneous of degree one in y^i

The *h*-curvature tensor R_{jkh}^{i} (Cartan's third curvature tensor) defined by

(1.13)

$$R_{jkh}^{i} = \partial_{h} \Gamma_{jk}^{*i} + (\dot{\partial}_{l} \Gamma_{jk}^{*i}) \Gamma_{sh}^{*l} y^{s} + C_{jm}^{i} (\partial_{k} \Gamma_{sh}^{*m} y^{s} - \Gamma_{kl}^{*m} \Gamma_{sh}^{l} y^{s}) + \Gamma_{mk}^{*i} \Gamma_{jh}^{m} - h/k$$

This tensor satisfies the following identity

(1.14)

$$R_{ijk|h}^{r} + R_{ihj|k}^{r} + R_{ikh|j}^{r} + y^{m} \left(R_{mkh}^{l} P_{ijl}^{r} + R_{mjk}^{l} P_{ihl}^{r} + R_{mhj}^{l} P_{ikl}^{r} \right) = 0,$$

where P_{ikh}^{i} is defined by

(1.15) (a)
$$P_{ikh}^{i} = \dot{\partial}_{h} \Gamma_{ik}^{*i} + C_{im}^{i} P_{kh}^{m} - C_{ihlk}^{i}$$
,

which satisfies

(b)
$$P_{ikh}^i y^j = \Gamma_{ikh}^{i} y^j = P_{kh}^i = C_{kh|r}^i y^r$$
.

The tensor R_{ikh}^i satisfies the following relations

(1.16) (a)
$$R_{jkh}^{i} = k_{jkh}^{i} + C_{jm}^{i} k_{rkh}^{m} y^{r}$$
,

(b)
$$R_{jkh}^{i} y^{j} = k_{jkh}^{i} y^{j} = H_{kh}^{i}$$
.

The associate tensor R_{ijhk} of R_{ihk}^r is given by

$$(1.17) R_{ijhk} = g_{jr}R_{ihk}^{r}$$

The curvature tensor H_{jkh}^{i} defined by

$$(1.18) H_{ikh}^{i} := \partial_{h} G_{ik}^{i} + G_{ik}^{r} G_{h}^{i} + G_{ih}^{i} G_{k}^{r} - h/k$$

Makoto Matsumoto calls it *h*-curvature tensor. However we shall call it the *h*-curvature tensor of Berwald . This tensor is

positively homogeneous of degree zero in y^i . The curvature tensor H^i_{ik} and the tensor H^i_{ik} are related by

(1.19) (a)
$$H_{jkh}^{i} y^{j} = H_{kh}^{i}$$
 and (b) $H_{jkh}^{i} = \dot{\partial}_{j} H_{kh}^{i}$.

The deviation tensor H_h^i , given by

(1.20)
$$H_h^i := 2\partial_h G^i - \partial_r G_h^i y^r + 2G_{hs}^i G^s - G_s^i G_h^s,$$

is positively homogeneous of degree two in y^i . Berwald constructed the tensor H^i_{jk} from the deviation tensor H^i_h according to

(1.21)
$$H_{kh}^{i} = \frac{1}{3} (\dot{\partial}_{h} H_{k}^{i} - \dot{\partial}_{k} H_{h}^{i}) .$$

In view of Euler's theorem on homogeneous functions we have the following relations

(1.22)
$$H_{ik}^{i} y^{j} = -H_{ki}^{i} y^{j} = H_{k}^{i} .$$

Also the above tensor satisfies the following

(1.23) (a)
$$H_k := H_{kr}^r$$
, (b) $H := \frac{1}{n-1} H_r^r$ and (c)

 $y_i H_{kh}^i = 0.$

The tensor $H_{.jkh}$ defined by

$$(1.24) H_{.ikh} := g_{ik} H_{jh}^{i} .$$

For a recurrent [12] and birecurrent [3] Finsler spaces we have respectively

(1.25)
$$R_{ikh}^{i} = \lambda_{m} R_{ikh}^{i}$$
 , $R_{ikh}^{i} \neq 0$

and

(1.26)
$$R_{jkh|m|l}^{i} = a_{lm} R_{jkh}^{i}$$
 , $R_{jkh}^{i} \neq 0$,

Page | 61 | The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

where the non-zero covariant vector field λ_m being the recurrence vector field and a_{lm} is a non-zero covariant tensor field of order 2 called birecurrence tensor field.

2. R^h-TRIRECURRENT SPACE

Let us consider a Finsler space whose Cartan third curvature tensor satisfies

(2.1)
$$R_{ikh|m||n}^{i} = b_{n1m} R_{ikh}^{i}$$
 , $R_{ikh}^{i} \neq 0$,

where b_{n1m} is a non-zero covariant tensor field of order 3 called as trirecurrence tensor field. The space satisfying the condition (2.1) will be called an R^h -trirecurrent space.

Let us consider an R^h -birecurrent space F_n satisfies (1.26). Differentiating (1.26) covariantly with respect to Cartan's connection Γ_{kh}^{*i} we have (2.1) where $b_{nlm} = (a_{lm|n} + a_{lm}\lambda_n)$. This shows that the space considered is an R^h -trirecurrent. Therefore we conclude that every R^h -birecurrent space is R^h -trirecurrent.

Now we shall consider an R^h -trirecurrent space characterized by (2.1). Transvecting (2.1) by g_{ip} and using the fact that the metric tensor is covariant constant with respect to Cartan's connection Γ_{kh}^{*i} , we have

$$(2.2) R_{ipkh|m|l|n} = b_{nlm}R_{ipkh}.$$

The contraction of the indices i and h in (2.1) gives

$$(2.3) R_{ik|m|l|n} = b_{nlm} R_{ik} ,$$

showing that the Ricci tensor R_{jk} of an R^h -trirecurrent space is trirecurrent. A space whose Ricci tensor is trirecurrent with respect to Cartan's connection may be called as Ricci trirecurrent space.

Thus we may conclude

Theorem 2.1 : An R^h -trirecurrent space is always a Ricci trirecurrent space.

We know that the curvature tensor R_{ijkh} of a three dimensional Finsler space is of the form [6]

$$(2.4) R_{ijkh} = g_{ik}L_{jh} + g_{jh}L_{ik} - k/h ,$$

where

(2.5)
$$L_{ik} = \frac{1}{n-2} \left(R_{ik} - \frac{r}{2} g_{ik} \right),$$

$$(2.6) r = \frac{1}{n-1} R_i^i .$$

Transvecting (2.3) by g^{jp} , we have

$$(2.7) R_{k|m|l|n}^{p} = b_{nlm} R_{k}^{p}.$$

If we contract the indices p and k in this equation ,we find

(2.8)
$$r_{|m|l|n} = b_{nlm} r$$
.

In view of this equation and the equation (2.3) the third covariant differentiation of (2.5) gives

$$(2.9) L_{ik|m|l|n} = b_{nlm} L_{ik}.$$

Differentiating (2.4) covariantly three times with respect to x^m , x^l and x^n successively in the sense of Cartan and using the equations (2.9) and $g^{ij}R_{ijkh} = R^r_{ikh}$ imply (2.1).

Thus we may conclude

 $Page \quad | \ 63 \ | \ \text{The Scientific Journal of The Faculty of Education - vol. (1), No (5) June 2008}$

Theorem 2.2: The three dimensional Ricci trirecurrent space is necessarily an R^h -trirecurrent space.

Makoto Matsumoto [6] introduced a Finsler space F_n (n > 3) for which the tensor R_{ijkh} satisfies the condition (2.4) and called it R3-like Finsler space.

If we consider an R3-like Ricci trirecurrent Finsler space then adopting the same process as in theorem (2.2) we may show that it is an R^h-trirecurrent space.

Thus we may conclude

Theorem 2.3 : An R3-like Ricci trirecurrent space is an R^h-trirecurrent space .

Transvecting (2.1) by y^{j} and using (1.16b), we get

(2.10)
$$H_{kh|m|l|n}^{i} = b_{nlm} H_{kh}^{i} .$$

Further transvection of (2.10) by y^k and using (1.22), we get

$$(2.11) H_{h|m|l|n}^{i} = b_{nlm} H_{h}^{i} .$$

Contracting the indices i and h in (2.11) and using (1.23b) ,we get

$$(2.12) H_{|m|||n} = b_{nlm}H .$$

Contracting the indices i and h in (2.10) and using (1.23a), we get

$$(2.13) H_{k|m|l|n} = b_{nlm}H_{k} .$$

Thus we may conclude the above discussion as follows

Theorem 2.4: The tensors H_{kh}^i , H_h^i , the vector H_k and the scalar H of an \mathbb{R}^h -trirecurrent space are all h-trirecurrent.

Now we shall try to find the necessary and sufficient condition for Berwald curvature tensor H^{i}_{jkh} to be h-trirecurrent.

For this purpose we differentiate (2.10) partially with respect to y^{j} , we get

$$(2.14) \qquad \dot{\partial}_{i} H_{kh|m|l|n}^{i} = \left(\dot{\partial}_{i} b_{nlm}\right) H_{kh}^{i} + b_{nlm} H_{jkh}^{i} ,$$

where $\dot{\partial}_j H_{kh}^i = H_{jkh}^i$. Using the commutation formula(1.9)

three times in (2.14)

where $P_{jk}^r := (\dot{\partial}_j \Gamma_{hk}^{*r}) y^h$, we get

(2.15)

$$\begin{split} &H_{jkh|m|l|n}^{i} + [\{H_{kh}^{r}\dot{\partial}_{j}\Gamma_{m}^{*i} - H_{h}^{i}\dot{\partial}_{j}\Gamma_{km}^{*r} - H_{kr}^{i}\dot{\partial}_{j}\Gamma_{hm}^{*r} - H_{kh}^{i}P_{jm}^{r}\}_{|l} + H_{kh|m}^{r}\dot{\partial}_{j}\Gamma_{nl}^{*i} - H_{h|m}^{i}\dot{\partial}_{j}\Gamma_{kl}^{*r} - H_{h|m}^{i}\dot{\partial}_{j}\Gamma_{kl}^{*r} - H_{kh|m}^{i}\dot{\partial}_{j}\Gamma_{kl}^{*r} - H_{kh|m}^{i}\dot{\partial}_{j}\Gamma_{kl}^{*r} - H_{kh|m}^{i}\dot{\partial}_{j}\Gamma_{km}^{*r} - H_{kh}^{i}\dot{\partial}_{r}\Gamma_{km}^{*s} - H_{ks}^{i}\dot{\partial}_{r}\Gamma_{km}^{*s} - H_{ks}^{i}\dot{\partial}_{j}\Gamma_{km}^{*s} - H_{kh|m}^{i}\dot{\partial}_{j}\Gamma_{km}^{*r} - H_{kh|m}^{i}\dot{\partial}_{j}\Gamma_{kl}^{*r} - H_{kh|m}^{i}\dot{\partial}_{j}\Gamma_{kl}^{*r} - H_{kh|m}^{i}\dot{\partial}_{r}\Gamma_{sl}^{*s} -$$

This equation shows that

$$(2.16) H_{ikh|m|l|n}^{i} = b_{nlm} H_{ikh}^{i}$$

if and only if the following equation holds, i.e.

(2.17)

$$[\{H_{kh}^{\ r}\dot{\partial}_{j}\Gamma_{m}^{\circ i}-H_{m}^{\ i}\dot{\partial}_{j}\Gamma_{km}^{\circ r}-H_{kr}^{\ i}\dot{\partial}_{j}\Gamma_{hm}^{\circ r}-H_{kh}^{\ i}P_{jm}^{\ r}\}_{|l}+H_{kh|m}^{\ r}\dot{\partial}_{j}\Gamma_{nl}^{\circ i}-H_{m|m}^{\ i}\dot{\partial}_{j}\Gamma_{kl}^{\circ r}-H_{kr|m}^{\ i}\dot{\partial}_{j}\Gamma_{hl}^{\circ r}-H_{kr|m}^{\ i}\dot{\partial}_{j}\Gamma_{hl}^{\circ r}-H_{kr|m}^{\ i}\dot{\partial}_{j}\Gamma_{hl}^{\circ r}-H_{kr|m}^{\ i}\dot{\partial}_{j}\Gamma_{hl}^{\circ r}-H_{kh|m}^{\ i}\dot{\partial}_{j}\Gamma_{m}^{\circ r}-H_{k$$

Thus the above discussion can be concluded as follows

Page | 65 | The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

Theorem 2.5: The Berwald's curvature tensor H^{i}_{jkh} of an R^{h} -trirecurrent space is h-trirecurrent if and only if the equation (2.17) holds.

The curvature tensor R_{jkh}^{i} and k_{jkh}^{i} are connected by the formula [11]

$$(2.18) R_{ikh}^{i} = k_{ikh}^{i} + C_{ir}^{i} H_{kh}^{r}.$$

Differentiating (2.18) covariantly with respect to x^m , we get

(2.19)
$$R_{ikh|m}^{i} = k_{ikh|m}^{i} + C_{ir|m}^{i} H_{kh}^{r} + C_{ir}^{i} H_{kh|m}^{r}.$$

Again differentiating (2.19) covariantly with respect to x^{i} , we get

(2.20)

$$R_{ikh|m|l}^{i} = k_{jkh|m|l}^{i} + C_{jr|m|l}^{i} H_{kh}^{r} + C_{jr|m}^{i} H_{kh|l}^{r} + C_{jr|l}^{i} H_{kh|m}^{r} + C_{jr}^{i} H_{kh|m}^{r} + C_{jr}^{i} H_{kh|m|l}^{r}.$$

Again differentiating (2.20) covariantly with respect to x^n , we get

(2.21)

$$\begin{split} R^{i}_{jkh|\mathbf{m}|l|n} &= k^{i}_{jkh|\mathbf{m}|l|n} + C^{i}_{jr|\mathbf{m}|l|n} H^{r}_{kh} + C^{i}_{jr|\mathbf{m}|l} H^{r}_{kh|n} + C^{i}_{jr|\mathbf{m}|n} H^{r}_{kh|l} + \\ C^{i}_{jr|\mathbf{m}} H^{r}_{kh|l|n} &+ C^{i}_{jr|l|n} H^{r}_{kh|\mathbf{m}} + C^{i}_{jr|l} H^{r}_{kh|\mathbf{m}|n} + C^{i}_{jr|n} H^{r}_{kh|\mathbf{m}|l} + C^{i}_{jr} H^{r}_{kh|\mathbf{m}|l|n} \end{split}$$

sing (2.1), (2.18) and

using (2.1),(2.18) and (2.10) in (2.21), we get (2.22)

$$\begin{array}{lll} b_{nlm}\,k_{jkh}^{\;\;i} = k_{jkh|\mathbf{m}|l|n}^{\;\;i} + C_{jr|\mathbf{m}|l|n}^{\;\;i}H_{kh}^{\;\;r} + C_{jr|\mathbf{m}|l}^{\;\;i}H_{kh|n}^{\;\;r} + C_{jr|\mathbf{m}|n}^{\;\;i}H_{kh|n}^{\;\;r} \\ + C_{jr|\mathbf{m}}^{\;\;i}H_{kh|l|n}^{\;\;r} + C_{jr|l|n}^{\;\;i}H_{kh|\mathbf{m}}^{\;\;r} + C_{jr|l}^{\;\;i}H_{kh|\mathbf{m}|n}^{\;\;r} + C_{jr|n}^{\;\;i}H_{kh|\mathbf{m}|l}^{\;\;r} \end{array}$$

From (2.22) we may conclude that the curvature tensor k_{jkh}^{i} is h-trirecurrent in an R^h -trirecurrent space if and only if

Thus, we have

Theorem 2.6 : Cartan curvature tensor k_{jkh}^i of an R^h -trirecurrent space is h-trirecurrent if and only if the condition (2.23) is satisfied.

3. CERTAIN IDENTITIES

We know that the tensor R_{ijhk} satisfies the identity ([1],[2])

(3.1)

$$R_{ijhk} + R_{ihkj} + R_{ikjh} + (C_{ijr}k_{shk}^{r} + C_{ihr}k_{skj}^{r} + C_{ikr}k_{sjh}^{r})y^{s} = 0,$$

which in view of (1.16b) reduces to

(3.2)

$$R_{ijhk} + R_{ihkj} + R_{ikjh} + (C_{ijr}H_{hk}^r + C_{ihr}H_{kj}^r + C_{ikr}H_{jh}^r) = o.$$

Differentiating (3.2) covariantly with respect to x^m , we get (3.3)

$$R_{ijhk\,|m} + R_{ihkj\,|m} + R_{ikjh\,|m} + (C_{ijr}H_{hk}^r + C_{ihr}H_{kj}^r + C_{ikr}H_{jh}^r)_{|m} = o.$$

Again differentiating (3.3) covariantly with respect to x^{i} , we get

(3.4)

$$R_{ijhk\,|m|l} + R_{ihkj\,|m|l} + R_{ikjh\,|m|l} + (C_{ijr}H_{hk}^{r} + C_{ihr}H_{kj}^{r} + C_{ikr}H_{jh}^{r})_{|m|l} = o.$$

Again differentiating (3.4) covariantly with respect to x^n and using (2.2), we get

(3.5)

$$b_{nlm}(R_{ijhk} + R_{ihkj} + R_{ikjh}) + (C_{ijr}H_{hk}^r + C_{ihr}H_{kj}^r + C_{ikr}H_{jh}^r)_{|m|l|n} = o.$$

Page | 67 | The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

Using (3.2) in (3.5), we get

(3.6)

$$(C_{ijr}H_{hk}^{r} + C_{ihr}H_{kj}^{r} + C_{ikr}H_{jh}^{r})_{|m|/|n} - b_{nlm}(C_{ijr}H_{hk}^{r} + C_{ihr}H_{kj}^{r} + C_{ikr}H_{jh}^{r}) = o.$$

Transvecting (3.6) by y^j and using (1.22) and (1.3a), we get

$$(C_{ikr}H_h^r - C_{ihr}H_k^r)_{|m|l|n} = b_{nlm}(C_{ikr}H_h^r - C_{ihr}H_k^r).$$

Transvecting (3.7) by g^{ji} and using the symmetric property of (h)hv-torsion tensor C_{ijk} in all its lower indices and using (1.3c), we get

$$(C_{kr}^{j}H_{h}^{r}-C_{hr}^{j}H_{k}^{r})_{|m|l|n}=b_{nlm}(C_{kr}^{j}H_{h}^{r}-C_{hr}^{j}H_{k}^{r}).$$

In view of (1.3c) and (1.17), the equation (3.4) can be written as

(3.9)

$$R^{i}_{jhk\,|\mathbf{m}|l} + R^{i}_{hkj\,|\mathbf{m}|l} + R^{i}_{kjh\,|\mathbf{m}|l} + (C^{i}_{jr}H^{r}_{hk} + C^{i}_{hr}H^{r}_{kj} + C^{i}_{kr}H^{r}_{jh})_{|\mathbf{m}|l} = o.$$

Using (1.16a) and (1.16b) in (3.9), we get

(3.10)

$$(k_{ihk}^{i} + k_{hki}^{i} + k_{kih}^{i})_{|m|l} + 2(C_{ir}^{i}H_{hk}^{r} + C_{hr}^{i}H_{ki}^{r} + C_{kr}^{i}H_{ih}^{r})_{|m|l} = 0$$
.

Using (1.10b) in (3.10), we get

$$(3.11) (C_{jr}^{i}H_{hk}^{r} + C_{hr}^{i}H_{kj}^{r} + C_{kr}^{i}H_{jh}^{r})_{|m|l} = 0,$$

which implies

(3.12)

$$\begin{split} &C_{jr|\mathbf{m}|l}^{i}H_{hk}^{r}+C_{jr|\mathbf{m}}^{i}H_{hk|l}^{r}+C_{jr|l}^{i}H_{hk|\mathbf{m}}^{r}+C_{jr}^{i}H_{hk|\mathbf{m}|l}^{r}+C_{hr|\mathbf{m}|l}^{i}H_{kj}^{r}+C_{hr|\mathbf{m}}^{i}H_{kj|l}^{r}\\ &+C_{hr|l}^{i}H_{kj|\mathbf{m}}^{r}+C_{hr}^{i}H_{kj|\mathbf{m}|l}^{r}+C_{kr|\mathbf{m}|l}^{i}H_{jh}^{r}+C_{kr|\mathbf{m}}^{i}H_{jh|l}^{r}+C_{kr|l}^{i}H_{jh|\mathbf{m}}^{r}+C_{kr}^{i}H_{jh|\mathbf{m}|l}^{r}=o. \end{split}$$

Differentiating (3.12) covariantly with respect to x^n in the sense of Cartan, we get

(3.13)

$$\begin{split} &C^{i}_{jr|\mathbf{m}|l|\mathbf{n}}H^{r}_{hk} + C^{i}_{jr|\mathbf{m}|l}H^{r}_{hk|\mathbf{n}} + C^{i}_{jr|\mathbf{m}|\mathbf{n}}H^{r}_{hk|l} + C^{i}_{jr|\mathbf{m}}H^{r}_{hk|l|\mathbf{n}} + C^{i}_{jr|\mathbf{n}}H^{r}_{hk|\mathbf{m}} + C^{i}_{jr|l}H^{r}_{hk|\mathbf{m}} + C^{i}_{jr|l}H^{r}_{hk|\mathbf{m}|\mathbf{n}} \\ &+ C^{i}_{jr|\mathbf{n}}H^{r}_{hk|\mathbf{m}|l} + C^{i}_{jr}H^{r}_{hk|\mathbf{m}|l|\mathbf{n}} + C^{i}_{hr|\mathbf{m}|l|\mathbf{n}}H^{r}_{kj} + C^{i}_{hr|\mathbf{m}|l}H^{r}_{kj|\mathbf{n}} + C^{i}_{hr|\mathbf{m}|l}H^{r}_{kj|l|\mathbf{n}} \\ &+ C^{i}_{lr|l|\mathbf{n}}H^{r}_{kj|\mathbf{m}} + C^{i}_{hr|l}H^{r}_{kj|\mathbf{m}|\mathbf{n}} + C^{i}_{hr|\mathbf{n}}H^{r}_{kj|\mathbf{m}|l} + C^{i}_{hr|\mathbf{n}}H^{r}_{kj|\mathbf{m}|l|\mathbf{n}} + C^{i}_{hr|\mathbf{n}|l|\mathbf{n}}H^{r}_{jh} + C^{i}_{kr|\mathbf{m}|l}H^{r}_{jh|\mathbf{n}} \\ &+ C^{i}_{kr|\mathbf{m}|l}H^{r}_{jh|l} + C^{i}_{kr|\mathbf{m}}H^{r}_{jh|l|\mathbf{n}} + C^{i}_{kr|l|\mathbf{n}}H^{r}_{jh|\mathbf{m}} + C^{i}_{kr|l|\mathbf{n}}H^{r}_{jh|\mathbf{m}|l} + C^{i}_{kr|\mathbf{n}}H^{r}_{jh|\mathbf{m}|l|\mathbf{n}} = o. \end{split}$$

Multiplying (3.13) by y^m and using (1.15b), we get (3.14)

$$\begin{split} &P^{i}_{jr||n}H^{r}_{hk} + P^{i}_{jr|l}H^{r}_{hk|n} + P^{i}_{jr|n}H^{r}_{hk|l} + P^{i}_{jr}H^{r}_{hk|l|n} + C^{i}_{jr|l}H^{r}_{hk|m}y^{m} + C^{i}_{jr|l}H^{r}_{hk|m|n}y^{m} \\ &+ C^{i}_{jr|n}H^{r}_{hk|m|l}y^{m} + C^{i}_{jr}H^{r}_{hk|m|l|n}y^{m} + P^{i}_{hr|l|n}H^{r}_{kj} + P^{i}_{hr|l}H^{r}_{kj|n} + P^{i}_{hr|n}H^{r}_{kj|l} + P^{i}_{hr}H^{r}_{kj|l|n} \\ &+ C^{i}_{lr|n}H^{r}_{lk|m|l}y^{m} + C^{i}_{hr|l}H^{r}_{kj|m|n}y^{m} + C^{i}_{hr|n}H^{r}_{kj|m|l}y^{m} + C^{i}_{hr|l}H^{r}_{kj|m|l|n}y^{m} + P^{i}_{kr|l|n}H^{r}_{jh} \\ &+ P^{i}_{kr|l}H^{r}_{jh|n} + P^{i}_{kr|n}H^{r}_{jh|l} + P^{i}_{kr}H^{r}_{jh|l|n} + C^{i}_{kr|l|n}H^{r}_{jh|m}y^{m} + C^{i}_{kr|l}H^{r}_{jh|m|n}y^{m} + C^{i}_{kr|n}H^{r}_{jh|m|l}y^{m} \\ &+ C^{i}_{kr}H^{r}_{jh|m|l|n}y^{m} = o. \end{split}$$

Multiplying (3.14) by y^h and using (1.3b), (1.22) and $P_{hk}^i y^h = 0$, we get

(3.15)

$$(P_{ir}^{i}H_{k}^{r}-P_{kr}^{i}H_{i}^{r})_{|l|n}+(C_{ir}^{i}H_{k}^{r}-C_{kr}^{i}H_{i|m}^{r})_{|l|n}y^{m}=0.$$

Consider the Bianchi identity for the tensor R_{ikh}^{i} given by

[11]

(3.16)

$$R_{jkh|m}^{i} + R_{jmk|h}^{i} + R_{jhm|k}^{i} + Y_{jhm|k}^{i} + Y_{sm}^{s} \left(R_{shm}^{r} P_{jkr}^{i} + R_{skh}^{r} P_{jmr}^{i} + R_{smk}^{r} P_{jhr}^{i} \right) = 0,$$

where

(3.17)
$$P_{ikh}^{i} = \dot{\partial}_{h} \Gamma_{ik}^{*i} - C_{ihlk}^{i} + C_{ir}^{i} C_{khlk}^{r} y^{s}.$$

Here we should note that due to difference in the definition of tensor P_{jkh}^{i} , the form of Bianchi identity (3.16) differs from (4.3.3) of [11].

Page | 69 | The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

Differentiating (3.16) covariantly with respect to x^{l} gives (3.18)

$$R_{jkh|m|l}^{i} + R_{jmk|h|l}^{i} + R_{jhm|k|l}^{i} + R_{jhm|k|l}^{i} + y^{s} \left(R_{shm}^{r} P_{jkr}^{i} + R_{skh}^{r} P_{jmr}^{i} + R_{smk}^{r} P_{jhr}^{i} \right)_{|l} = 0 .$$

Differentiating (3.18) covariantly with respect to x^n gives (3.19)

$$R_{jkh|m|l|n}^{i} + R_{jmk|h|l|n}^{i} + R_{jhm|k|l|n}^{i} + R_{jhm|k|l|n}^{i} + y^{s} \left(R_{shm}^{r} P_{jkr}^{i} + R_{skh}^{r} P_{jmr}^{i} + R_{smk}^{r} P_{jhr}^{i} \right)_{|l|n} = 0.$$

In view of the condition (2.1) characterizing the R^h-trirecurrent space and the equation (1.16b), the identity (3.19) may be written as

(3.20)

$$b_{nlm}R_{jkh}^{i} + b_{nlh}R_{jmk}^{i} + b_{nlk}R_{jhm}^{i} + \left(H_{hm}^{r}P_{jkr}^{i} + H_{kh}^{r}P_{jmr}^{i} + H_{mk}^{r}P_{jhr}^{i}\right)_{|I|_{n}} = 0,$$

since y^i is covariant constant. Transvecting (3.20) by y^j and using (1.16b) and (1.15b), we get

(3.21)

$$b_{nlm}H_{kh}^{i} + b_{nlh}H_{mk}^{i} + b_{nlk}H_{hm}^{i} + \left(H_{hm}^{r}P_{kr}^{i} + H_{kh}^{r}P_{mr}^{i} + H_{mk}^{r}P_{hr}^{i}\right)_{lln} = 0.$$

Thus we may conclude

Theorem 3.1: In an R^h -trirecurrent space, the identities (3.13), (3.15) and (3.21) hold and the tensors $C_{ijr}H^r_{kh} + C_{ihr}H^r_{kj} + C_{ikr}H^r_{jh}$; $C_{ikr}H^r_h - C_{ihr}H^r_k$ and $C^j_{kr}H^r_h - C^j_{hr}H^r_k$ are all h-trirecurrent.

4. P2-LIKE R^h-TRIRECURRENT SPACE

A P2-like space is characterized by (4.1) $P_{jkh}^{i} = \phi_{j} C_{kh}^{i} - \phi^{i} C_{jkh},$

where ϕ_j is a non-zero covariant vector field. We must note that a P2-like space is necessarily a P^* -Finsler space characterized by

$$(4.2) P_{kh}^{i} = \phi C_{kh}^{i} ,$$

where $P_{jkh}^i y^j = P_{kh}^i = C_{kh|r}^i y^r$ and $\phi = \phi_j y^j$.

Let us consider a P2-like R^h -trirecurrent space, then we necessarily have the equation (4.1), (4.2) and the identity (3.16). From (4.1) and the identity (3.16), we have (4.3)

$$R_{jkh|m}^{i} + R_{jmk|h}^{i} + R_{jhm|k}^{i} + \phi_{j} \left(H_{hm}^{r} C_{kr}^{i} + H_{kh}^{r} C_{mr}^{i} + H_{mk}^{r} C_{hr}^{i} \right) - \phi^{i} \left(H_{hm}^{r} C_{jkr}^{r} + H_{kh}^{r} C_{mr}^{i} + H_{mk}^{r} C_{hr}^{i} \right) = 0,$$

where
$$R_{jhk}^{i} y^{j} = k_{jhk}^{i} y^{j} = H_{hk}^{i}$$
.

Using (2.18), (1.10b), $R_{ijhk} = k_{ijhk} + C_{ijm} H_{hk}^{m}$ and

$$k_{jikh} + k_{hijk} + k_{kihj} = 0$$
 in (4.3), we get

(4.4)

$$R_{jkh|m}^{i} + R_{jmk|h}^{i} + R_{jhm|k}^{i} + \phi_{j} \left(R_{khm}^{i} + R_{mkh}^{i} + R_{hmk}^{i} \right) - \phi^{i} \left(R_{jhmk}^{i} + R_{jmkh}^{i} + R_{jkhm}^{i} \right) = 0,$$

since the metric tensor is h-covariant constant the equation

(4.4) may be written as

(4.5)

$$R_{ijkh|m} + R_{ijmk|h} + R_{ijhm|k} = \phi_i (R_{jhmk} + R_{jmkh} + R_{jkhm}) + \phi_j (R_{ikhm} + R_{imkh} + R_{ihmk})$$

•

Transvecting (4.5) by y^i , we have

(4.6)

$$H_{.jhh|m} + H_{.jmk|h} + H_{.jhm|k} = \phi(R_{jhmk} + R_{jmkh} + R_{jkhm}) + \phi_{j}(H_{.khm} + H_{.mkh} + H_{.hmk})$$

where $\phi = \phi_i y^i$. We know that the tensor H_{kh}^i satisfies the identity (1.23c). Differentiating (1.23c) partially with respect to y^j and using (1.19b) and $g_{ij} = \dot{\partial}_i y_j = \dot{\partial}_j y_i$, we get

$$(4.7) g_{ii}H_{ih}^{i} + y_{i}H_{ikh}^{i} = o.$$

Taking skew symmetric part of (4.7) with respect to indices j, k and h and using the first Bianchi identity for H_{ikh}^i , we get

Page | 71 | The Scientific Journal of The Faculty of Education - vol.(1), No (5) June 2008

$$(4.8) g_{ii}H_{kh}^{i} + g_{ih}H_{ik}^{i} + g_{ik}H_{hi}^{i} = 0.$$

Using $H_{ik,h} := g_{ik} H_{ih}^i$ in (4.8), we may also write

(4.9)
$$H_{.ikh} + H_{.hik} + H_{.khi} = 0.$$

Using (4.9) in (4.6), we get

(4.10)
$$H_{.ikh|m} + H_{.imk|h} + H_{.ihm|k} = \phi(R_{ihmk} + R_{imkh} + R_{ikhm}),$$

or

$$(4.11) H_{kh|m}^{i} + H_{mk|h}^{i} + H_{hm|k}^{i} = -\phi(R_{hmk}^{i} + R_{mkh}^{i} + R_{khm}^{i}).$$

Differentiating (4.11) covariantly with respect to x^{T} in the sense of Cartan we get

(4.12)

$$H_{kh|m|l}^{i} + H_{mk|h|l}^{i} + H_{hm|k|l}^{i} = -\phi_{l}(R_{hmk}^{i} + R_{mkh}^{i} + R_{khm}^{i}) - \phi(R_{hmk}^{i} + R_{mkh}^{i} + R_{khm}^{i})_{l}.$$

Differentiating (4.12) covariantly with respect to x^n in the sense of Cartan and using (2.10) ,we get

(4.13)

$$\begin{split} b_{nlm}H_{kh}^{i} + b_{nlh}H_{mk}^{i} + b_{nlk}H_{lm}^{i} &= -\phi_{\parallel \mid n}(R_{lmk}^{i} + R_{mkh}^{i} + R_{klm}^{i}) - \phi_{\parallel}(R_{lmk}^{i} + R_{mkh}^{i} + R_{klm}^{i})_{\mid n} \\ -\phi_{\parallel}(R_{lmk}^{i} + R_{mkh}^{i} + R_{klm}^{i})_{\parallel} - \phi(R_{lmk}^{i} + R_{mkh}^{i} + R_{klm}^{i})_{\parallel \mid n}. \end{split}$$

Thus, we conclude:

Theorem 4.1 : In a P2-like R^h -trirecurrent space we have the following identities :

$$H_{kh|m}^{i} + H_{mk|h}^{i} + H_{hm|k}^{i} = -\phi(R_{hmk}^{i} + R_{mkh}^{i} + R_{khm}^{i})$$
,

$$H_{kh|m|l}^{i} + H_{mk|h|l}^{i} + H_{hm|k|l}^{i} = -\phi_{|l}(R_{hmk}^{i} + R_{mkh}^{i} + R_{khm}^{i}) - \phi(R_{hmk}^{i} + R_{mkh}^{i} + R_{khm}^{i})_{|l}$$
and

$$\begin{split} b_{nlm}H^{i}_{kh} + b_{nlh}H^{i}_{mk} + b_{nlk}H^{i}_{hm} &= -\phi_{\parallel \mid n}(R^{i}_{hmk} + R^{i}_{mkh} + R^{i}_{klm}) - \phi_{\parallel}(R^{i}_{hmk} + R^{i}_{mkh} + R^{i}_{klm})_{\mid n} \\ -\phi_{\mid n}(R^{i}_{hmk} + R^{i}_{mkh} + R^{i}_{klm})_{\parallel} -\phi(R^{i}_{hmk} + R^{i}_{mkh} + R^{i}_{klm})_{\parallel \mid n}. \end{split}$$

REFERENCES

- [1] **Cartan, Élie.:** Sur les espaces de Finsler, *C.R. Acad. Sci. (Paris)*, 196 (1933) 582-586.
- [2] **Cartan, Élie.:** Les espaces de Finsler, *Actualités, Paris*, 79 (1934). 2nd edit 1971.
- [3] **Dikshit, Shalini:** *Certain types of Recurrences in Fisler spaces*, D. Phil. Thesis, university of Allahabad, Allahabad, 1992.
- [4] **Matsumoto, Makoto:** On h-isotropic and C^h -recurrent Finsler spaces, J.*Ma- th* . *Kyoto Univ.*,11 (1971) 1-9.
- [5] **Matsumoto, Makoto:** On C-reducible Finsler spaces, *Tensor N.S.*, 24 (1972) 29-37.
- [6] **Matsumoto, Makoto:** A theory of three-dimensional Finsler spaces in terms of scalars, *Demonst. Math.*, 6 (1973) 223-251.
- [7] **Moór, A.:** Untersuchungen Über Finslerräume von rekurrenter Krümmung, *Tensor N.S.*, 13 (1963). 1-18.
- [8] **Moór, A.:** Räume von zweifach rekurrenter Krümmung, *Publ. Math.Debrec-en*, 18 (1971) 165-169.
- [9] **Moór, A.:** Über Finslerräume von zweifach rekurrenter Krümmung, *Acta. Math. Acad. Sci. Hungar.*, 22(1971) 453-465.
- [10] **Qasem,F.Y.A.:** On Transformations in Finsler Spaces, D.Phil, Thesis, Unive-rsity of Allahabad, Allahabad (India), 2000.
- [11] Rund, H.: The differential geometry of Finsler spaces, Springer-verlag, Berlin-Göttingen-Heidelberg, 1959.
- [12] **Verma, Reema:** *Some transformations in Finsler spaces,* D. Phil. Thesis, Uni- versity of Allahabad, Allahabad (India), 1991.