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ABSTRACT:

A model of Ekman boundary layer on a
porous Plate is considered and the
governing differential equations are
introduced. Steady state solutions for the
velocity and temperature distributions are
obtained. The effect of buoyancy forces on
velocity and temperature distributions are
studied. The results indicate that the
effects of buoyancy forces have significant

contribution to the field of profiles.
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1. Introduction

Ekman boundary layer on arbitrary surfaceciwhiorms in a
rotating systems at either free or solid boundatigscally normal
to the axis of rotation, such boundary layers @aymportant roles
in many geophysical and technical flows includingrgke
atmospheric vortices and source-sink flow in tuelsid]. Further,
when a vast expansion of viscous liquid boundearynfinite flat
plate is rotating about an normal axis to theeplatlayer is formed
near the plate where the viscous and coriolis &tbesame order
of magnitude, this is known as Ekman layer [5].

The study of the Ekman layer on arbitrary ascef is of
geophysical interest as it has seen in the studwyiod-generated
ocean currents on a rotating earth [3]. The dynaofifluids in
porous media has been a subjects of numerous tleabrand
experimental studies because of its importanceefgineering and
environmental application [10]. The exact analgidution for free
convection boundary layers on a heated verticake phdath lateral
mass flux embedded in a saturated porous mediune He@en
obtained by Magyn and Keller[9]. Mosa and Mnaa ][12
investigated the effect of radiation limits in theHD Ekman layer
on a porous plate, showing that there was a sagmfi effect of
radiation on the temperature distribution. Wang &ialyat [14]
developed the governing equations for the unstégdyomagnetic

rotating flow of a fourth order fluid past a porquiate. A numerical
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solution to the problem of the three-dimensionaildfiflow in a long

rotating heterogeneous porous channel is obtaigedHavstad and
Vadasz [7].

Al makrami [1,2] has found the steady state soilutior Ekman

boundary layer flow and the stability of this modahder an
optically thick limit and under an optically thitmit has been
investigated.

In this paper, the model of Ekman layer on porolagephas been
considered. The equations governing such a modeé been
introduced and the effect of buoyancy forces anwéblocities and

temperatures profile are studied.
2. Formulation

The system consists of fluid occupying thef-sphce below an
infinite horizontal plate which taken in the xy-p&a The entire fluid
plane system is rotates a bout a vertical downvexid, which is
taken as a positive direction of z-axis, with @farm angular
velocity Q=0Q (0,0,-1), the infinite horizontal plate which
coincides with z=0 plane, is uniformly porousgdats temperature
Is considered having a constant value equalysto The free stream

temperature is {I.

3.Governing equations

The basic differential equations governing such aeh are state
equation, continuity equation, motion equation andrgy equation.

They can be summarized as follows [12]
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p=po[1- BT -T, )],
(3.1)

0.v =0,
(3.2)

—

,00{%/ +V .OV+20 x\?} = —Op+ 0N + 0 —%\7
and

oT N
—+ =kO°T +®
pocp{ at 'V .DT} :

(3.4)
Wherep is density,3 is the coefficient of thermal expansion, and

Po is a characteristic density. This means that #esidly is constant
everywhere except where it produce buoyancy force

v =ui+Vv j+w k IS the velocity vector where, U,V and W are the

velocity components in Xx,y, and z directions resipety, U is the
fluid viscosity, P is the pressure, g is the aelon gravitaty, K is
the permeability coefficient of the porous mediumy, is specific
heat at constant pressure, T is the temperatyris, tke coefficient
of thermal conductivity and® is the viscouse dissipation.
Equation(3.1) is known as Boussinesq approximatigguation
(3.2) becomes

ou oV
—+—=0
ox oy

(3.5)
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This means that U and V are functions of g ¢].
The fourth term on the right hand side of equaf®i3) represents
the effect of permeability of porous medium .

The motion equation(3.3) is reduced to

oP  dU u
—2QpN =-——+ -2y,
Po x Ha? K
(3.6)
oP  dV u
20pU = ——+ - =
Po oy HaZ "k
(3.7)
and
O:a_P—
0z
(3.8)

For such a model, the energy equation is

o5 ) (5 ()
P~ 3x Y ax?  az? dz dz
(3.9)

The boundary conditions satisfying the governiggagions are

) For velocity:
U=vV=W=0 when 2z - 0
U=u,,V=W=0 when 2z -
(3.10)

where u0 is constant, reference velocity
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II) For temperature:

T=T, when z-0

T=T, when z-

(3.11)

The equation of motion (3.3) without fourth term e right hand
side, subjected to the boundary conditions (3.890ghbeen solved
by Almakrami [1]. Eliminating pressure term fromquation (3.5),
(3.6) and (3.7) it follows that

2 3
2@ 1 OP pudu_ udu

dz  p, %0z p, dz® kp, dz
(3.12)
du__1 0°P LM d? vV U adv

2Q— = —
dz ,00 ayaz 0, dz°  kp, dz
(3.13)
1 9°P _op
,00 0Z0X  OX
(3.14)
1 0°P _op
p, 0y Oy
(3.15)

Using the state Equation(3.1), and letting BaB (5] , then we get

T _ T (,odV ,ud3U _ M du
ox £,9 dz 0, 42 Kp, dz

(3.16)
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du _pd¥V _ u dv
dz ,oodz Ko, dz

(3.17)

Since the right hand side of equation (3.16) iarecfion of z alone,

2Q

then T=T(2)+ LT (2)
v

(3.18)
wherert is a suitable scalar. This is means that T ise@al function
of x.

Substituting (3.18) in the energy equati®®) we get
U =|_ (9T [y 9T
pocp{u y rT}—k{ 7 + v rxazzJ
(&)%)
+| —
dz dz

(3.19)

Equation (3.19) can be rewritten as

] (2]

07° dz dz
(3.20)
Tu, d2T
ST
(3.21)
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After linearizing T the initial and boundary abtions for

temperature become

T =T, when z=0

T =T, when z=o
T=0 when z=0
T=0 when z=o

(3.22)

4. Dimensionless form of the governing equations

For converting the governing partial differahtquations (3.16),
(3.17), (3.18), (3.20) and (3.21) into dimensiosjese introduce

the following dimensionless quantities as follows
x:if,yziq, ZZKZ,T :TOQ, U =uu, V:UOV
U U U

where &,7 and ¢ are the dimensionless distanceéin n and ¢

directions respectivel@,is the dimensionless temperature arehd

v are dimensionless velocities§rand”/ directions respectively.

Define:
_Vp, _2Qv :
Re=-—Reynolds number, E=——Rotation number,
H Uo
C 2
Pr :p—/JPrandtI numberEc = -2 Eckert number,Gr = gposﬂv
CoTo Uy, 4

Grashof number .
Substituting these dimensionless quantities intoaggns (3.16),
(3.17), (3.18), (3.20) and (3.21),we obtain
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dég _ ERedv 1 du 1 du

dé~ Gr d¢ tor d7® KGr d7
(4.1)

du_ 1 dv_ 1 dv
d¢ ERed{® kERed(

4.2)
6=6()+166({)
(4.3)

~ 1d%6  Ec|(dv)  (du)
ugd =— +— || — | +| —
pr dZ> RelldZ dd
(4.4)
1d9
pr dJ*
(4.5)
The initial and boundary conditions (3.10) and 23.Become

) For velocity
u=0 when ¢ - 0

(4.6)
II) For temperature
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I
=

when ¢ - 0

Qo Qo

Q!
1
o o

WhenZ—>00

when ¢ - 0

Q!
1

when Z - 0
4.7)

whereo = L}
0

5. Solution
Equation (4.5) give
6 =c¢

(5.1)

Wherec, is arbitrary constant. Then Equation (4.1) become

ERedv, 1du_ 1 du
Gr d¢ Grd?® kGrd¢d
(5.2)
Equations (4.2) and (5.2) may be reduced to onel-tbrdinary

rcd =

linear differential equation of complex variable=u+iv where
i =+/-1 as:

3
CIV;’—iER dw 1%— rcGrd
d¢ d kd¢

or
dw

d¢e

» O _
d a7 rcGrd
(5.3)
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whered” = (ERei +1)
k

With the boundary conditions

w0) =0

wiL)=1 ,L - wo(L>>1)
d’w _(, -\ dw
dZs_(?-'-EReI)dZ(O)

(5.4)

Solving this equation, using the relevant boundaogditions, by

consideringq:% and neglecting smallest quantities, we obtain

the following
w=(@0+A -Ai)-0+A, -Ail ¥ +Al?
(5.5)
where
-16rc EReGrr Grr

= oepaan - CAITGA LA S Ay = ;
2ERei+1) 2(E?Re+ klz) 2k(E?Ré+ klz)

11
d=ci+b, c={i+1(i2+ E?Ré)2)2 ’bz_ERe
2k 2k 2C

since w=u+ivthen

u=@1+A)1-cospl)e )+ Asinpl)e™ -cAl>

(5.6)

and

v=A(cospf)e™ -1) + (L+ A)sinb{) e +cAl?
(5.7)
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Substitute from (5.6 ), (5.7 ), and (5.1) intoA4we get

?Me =R([1-cosp¢)e ] +R{sinb)e™ +R¢°+Re™ +R{?

+ R € cosp?)
(5.8)

where

R =P+ A) R =25 T 4 b oA - o) + Prag

TS 2A ¢ A RY(E ) R =B A

R =-Pr’A, R == -

R =~ (h-bA +DA, +C+CA +CA)

Equation(5.8) gives
=270 55040 Bpo 1R e cosbl) + R,e sinbd) + Red € cos?)
200 12 6
R,

R ESINGS) + e il 4,
(5.9)

where
R, = R -b)+ 2R R bR, [ 2R~ (¢ )R | bR ~CR,

3 (CZ +b2)2 C2+b2 1114 (CZ +b2)2 C2+b2 !

= _CRFOR o bR R g O R, R Ry R
Re =g T g T TR Ty (20L+12L+6L) L

_C(R-R)-bR, o _b(R-R)-cR,  _(c’-b*)(R-R)-2chR
R7 - 2 +b? ’RB - 2 +b? ’RB - (C2+b2)2 ,and
R, = 20R~R)~(? ~bIR,

0 (C2+b2)2
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Substituting (5.9) and (5.1) into (4.3) we get tteamperature

distribution as
_& 5 & 4 5 3 —c{ —C{ i —c{
0= 20( + 12( + 5 ¢ +R£e™ cospd) + R sinfd) + Rs{e™ cospq)

+RLE¥SNGY) + e + (1, 46T+,
(5.10)
6. Resultsand conclusions
6.1. Results
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Fig.1. profilepo:‘ dimensionless Fig.2. profile of dimensionless
velocity u for different value ofr velocity v for different value ofr
Fig.1. Shows the variation of u with degtat different values of,
for arbitrary values for the parameters E=0.25,Gr=8=0.602
Re=20 and Pr=1.7. It is shown that u start to iaseerapidly from
the surfacg(=0) to reach a maximum values u=0.99 at depth

approximately 1.7 for=-0.015, u=0.89 at depth approximately 1.9
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for 1=-0.07,and u=0.74 at depth approximately 2.2tf60.15, then
u increases slowly to reach same value v=1 at

depth 20 forr=-0.015,1=-0.7andr=-0.15.

Fig.(2), shows the variation of v with depfhwith parameters
E=0.25 ,Gr=60, k=0.602,Re=20 and Pr=1.7. v, starincrease
rapidly from the surface to reach a maximum valyg =0.89 at
depth a bout 1.08 for=-0.15 , a bouv,,,,= 0.51 at depth a bout 0.8
for 1=-0.07 and a bout Vimax
=0.2

1=-0.025

[0} 2 4 6 8 10 12 14 16 18 20

depth ¢
Fig.3. Profile of dimensionless temperature different
value oft

97 at depth a bout 0.55 far-0.015,thenv decreases slowly to
reach same value v=0 at depth 20 for-0.15,1=-0.07and=-
0.015
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Fig.(3),shows the variation dd with depth {,with parameters
E=0.25 Gr=60 , k=0.602 , Re=20~0.99992 , Ec=0.018+10 and
Pr = 1.7 .The temperature increases very slowli dépth to reach
a maximum valueéd,,,=1.02 at(=8. Then the temperature starting

to decrease with increasing depth.
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. . Cepth .
dimensionless valocities u Fig.5. A compansopn between profiles

of dimensionless velocitiesv

Fig.4. Shows a comparison between profiles of etisionless
velocity u with parameters, E=0.25,Gr=60 ,Re=26;0.1, k=0.602
, Pr=1.7.1t is clear that in the porous case, thalues of u are

smaller than their values in normal case (i.e emwk=0).

Fig.5. Shows a comparison between profiles ofietisionless
velocity v with parameters, E=0.25, Gr=60, Re=265-0.1,
k=0.602, Pr=1.7. It is clear that in the porousecdke values of v

are smaller than their values in normal case (Nken k=0 ).
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6.2. Conclusion

In this paper we have attempted to investighe effect of the
buoyancy forces on an Ekman Layer on a porousplaie. The
systems of differential equations with the relevamundary
conditions have been written . The resulting dédferal equations
represent this model have been solved for velsciieren by
equations (5.6) & (5.7), and temperature given dpyagion (5.10) .
The results are illustrated by graphs. The appat@rboundary-
Layer equation, for this model involve one impottaarametert,
which measures the velocities and temperature tsetss to
buoyancy forces arises from variation of densitfffects on
velocities and temperature are illustrated in Ftgrbuglh Fig.5.
The velocity distributions u for different valueé 1 are given in
Fig.1. It is shown that the values of velocitiecreases with
increasing the values af also the velocity distributions v for
different values of are illustrated in Fig.2., the values of velodtie
increase with decreasing the values of. The temperature
distributions for different values af are illustrated in figure[3],the
values of temperatures increases with decreasigwalues offt.
Fig.4. through Fig.5. Show the effect of porosity the velocities
distributionsu and v, it has been seen that when their values

increasing the decreasing in the velocities prefdppear .
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