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ABSTRACT: 

 

     A model of Ekman boundary layer on a 

porous Plate is considered and the 

governing differential equations are 

introduced. Steady state solutions for the 

velocity and temperature distributions are 

obtained. The effect of buoyancy forces on 

velocity and temperature distributions are 

studied. The results indicate that the 

effects of buoyancy forces have significant 

contribution to the field of profiles. 
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1. Introduction 

     Ekman boundary  layer on arbitrary surface which forms in a 

rotating systems at either free or solid boundaries, typically normal 

to the axis of rotation, such boundary layers play an important roles 

in many geophysical and technical flows including large  

atmospheric vortices and source-sink flow in turbines[5]. Further, 

when a vast expansion of viscous liquid bounded by an infinite flat 

plate is rotating about  an normal axis to the plate, a layer is formed 

near the plate where the viscous and coriolis are of the same order 

of magnitude, this is known as Ekman layer [5]. 

     The study of the Ekman layer on arbitrary surface is of 

geophysical interest as it has seen in the study of wind-generated 

ocean currents on  a rotating earth [3]. The dynamic of fluids in 

porous media has been a subjects of numerous theoretical and 

experimental studies because of its importance for engineering and 

environmental application [10]. The exact analytic solution for free 

convection boundary layers on a heated vertical plate with lateral 

mass flux embedded in a saturated porous medium have been 

obtained by Magyn  and Keller[9]. Mosa and Mnaa [12] 

investigated the effect of radiation limits in the MHD Ekman layer 

on a porous plate, showing that there was a significant effect of 

radiation on the temperature distribution. Wang and Hayat [14] 

developed the governing equations for the unsteady hydromagnetic 

rotating flow of a fourth order fluid past a porous plate. A numerical 
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solution to the problem of the three-dimensional fluid flow in a long 

rotating heterogeneous porous channel is obtained by  Havstad and 

Vadasz [7]. 

 Al makrami [1,2] has found the steady state solution for Ekman 

boundary layer flow and the stability of this model under an 

optically thick limit  and under an optically thin limit  has been 

investigated.  

In this paper, the model of Ekman layer on porous plate has been 

considered. The equations governing  such a model have been 

introduced and the  effect of buoyancy forces on the velocities and 

temperatures profile are studied. 

2. Formulation 

     The system consists of fluid occupying the half-space below an 

infinite horizontal plate which taken in the xy-plane. The entire fluid 

plane system is rotates a bout a vertical downward axis, which is 

taken as a positive  direction of  z-axis, with a uniform angular 

velocity )1 , 0 , 0( −Ω=Ω
r

, the infinite horizontal plate which 

coincides with  z=0  plane, is uniformly porous, and its temperature 

is considered having a constant value equal to T0 . The free stream 

temperature is T1 .  

3.Governing equations 

The basic differential equations governing such a model are state 

equation, continuity equation, motion equation and energy equation. 

They can be summarized as follows [12] 
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 Where ρ is density, β is the coefficient of thermal expansion, and 

ρ0 is a characteristic density. This means that the density is constant 

everywhere except where it produce buoyancy force 
→→→→

++= kWjViUV   is the velocity vector where, U,V and W are the 

velocity components in x,y, and z directions respectively, µ is the 

fluid viscosity, P is  the pressure, g is the acceleration gravitaty, K is 

the permeability coefficient of the porous medium, cp  is specific 

heat at constant pressure, T is the temperature, k1 is the coefficient 

of thermal conductivity and Φ is the viscouse dissipation. 

Equation(3.1) is known as Boussinesq approximation. Equation 

(3.2) becomes 
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      This means that U and V are functions of z only [5]. 

The fourth term on the right hand side of equation (3.3) represents 

the effect of  permeability of porous medium . 

The motion equation(3.3) is reduced to  
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For such a model, the energy equation is 
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 The boundary conditions satisfying the governing equations are         

I) For velocity:  
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0,

00
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   (3.10) 

where u0 is constant, reference velocity   
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II) For temperature:  
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→=
zwhenTT

zwhenTT

1

0 0
                       

    (3.11) 

The equation of motion (3.3) without fourth term on the right hand 

side, subjected to the boundary conditions (3.10),have been solved 

by Almakrami [1].  Eliminating pressure term from equation (3.5), 

(3.6) and (3.7) it follows that  
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Using the state Equation(3.1), and letting P=P(x,y) [5] , then we get  
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Since the right hand side of equation (3.16) is a function of z alone, 

then                                    ( ) ( )zTx
u

zTT τ
ν

0* +=                            

      (3.18) 

where τ is a suitable scalar. This is means that T is a linear function 

of x .  

       Substituting (3.18) in the energy equation (3.9) we get 
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Equation (3.19) can be rewritten  as 
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   After linearizing T the initial and boundary conditions for 

temperature become  
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4. Dimensionless form of the governing equations  

    For converting the governing partial differential equations (3.16), 

(3.17), (3.18), (3.20) and (3.21) into dimensionless, we introduce 

the following dimensionless quantities as follows  
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000

,, ,,, ====== θζνηνξν
 

where ζηξ and,  are the dimensionless distance in ξ , η  and ζ  

directions respectively,θ is the dimensionless temperature and u and 

v are dimensionless velocities in ξ and η directions respectively. 
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µ
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Substituting these dimensionless quantities into equations (3.16), 

(3.17), (3.18), (3.20) and (3.21),we obtain  
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The initial and boundary conditions (3.10) and (3.22) become 

I)  For velocity 
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II) For  temperature 
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5. Solution 

Equation (4.5)  give 
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Where 1c   is arbitrary constant. Then Equation (4.1) becomes 
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Equations (4.2) and (5.2) may be reduced to one third–ordinary 

linear differential equation of complex variable w=u+iv  where 
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Solving this equation, using the relevant boundary conditions, by 

considering 
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Substitute from (5.6 ), (5.7 ), and (5.1)  into (4.4)  we get       
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Equation(5.8) gives 

21
2

2
4

16

151413
314553

4
)sin(

)cos()sin()cos(
61220

rre
c

R
beR

beRbeRbeR
RRR

cc

ccc

++++

+++++=

−−

−−−
∗

ζζζ

ζζζζζζζθ

ζζ

ζζζ

        (5.9) 

where 

222
2

22
16

10

222
261

22

922
216

822
261

7

12213543
113222

87
1522

87
16

22
109

222
8

22
7

1422
109

222
8

22
7

13

)(

)()(2

,
)(

2))((
,

)(
,

)(

,)
61220

(,1,,

,
)(

)(2
,

)(

2)(

bc

RbcRRcb
R

and
bc

cbRRRbc
R

bc

cRRRb
R

bc

bRRRc
R

L

R
L

R
L

R
L

R

L
rRr

bc

cRbR
R

bc

bRcR
R

bc

cRbR

bc

RbccbR
R

bc

bRcR

bc

cbRbcR
R

+
−−−=

+
−−−=

+
−−=

+
−−=

−++−Θ=−=
+
−=

+
+−=

+
−+

+
−−=

+
+−

+
+−−=

 



  

    The Scientific Journal of The Faculty of Education                - vol.(1), No (2) January 2007        
   -  94  -

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

depth ζ

ve
lo

ci
ty

 u
 

τ=-0.015 

τ=-0.07 

τ=-0.15 

Fig.1. profile of dimensionless 

velocity u for different value of τ 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

depth ζ

ve
lo

ci
ty

 v
 

τ=-0.15 

τ=-0.07 

τ=-0.015 

Fig.2. profile of dimensionless 

velocity v for different value of τ 

Substituting (5.9) and (5.1) into (4.3) we get the temperature 

distribution as 
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6. Results and  conclusions  

6.1. Results 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Shows the variation of u with depth ζ at different values of τ, 

for arbitrary values for the parameters E=0.25,Gr=60, k=0.602 

Re=20 and Pr=1.7. It is shown that u start to increase rapidly from 

the surface(ζ=0) to reach  a  maximum values u=0.99 at depth 

approximately 1.7 for τ=-0.015, u=0.89 at depth approximately 1.9 
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for τ=-0.07,and u=0.74 at depth approximately 2.2 for τ=-0.15, then 

u increases slowly to reach same value v=1 at  

depth 20 for τ=-0.015, τ=-0.7and τ=-0.15. 

 

 Fig.(2), shows  the variation of v with depth ζ,with parameters 

E=0.25 ,Gr=60, k=0.602,Re=20 and Pr=1.7. v, start to increase 

rapidly from the surface to reach  a maximum value vmax =0.89 at 

depth a bout 1.08 for  τ=-0.15 , a bout vmax= 0.51 at depth a bout 0.8 

for τ=-0.07 and a bout vmax 

=0.2

97 at depth a bout 0.55 for τ=-0.015,then v decreases slowly to 

reach same value v=0 at  depth 20    for  τ=-0.15, τ=-0.07andτ=-

0.015 
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Fig.(3),shows  the variation of θ with depth ζ,with parameters 

E=0.25 Gr=60 , k=0.602 , Re=20, Θ=0.99992 , Ec=0.010,ξ=10 and 

Pr = 1.7 .The temperature increases very slowly with depth to reach 

a maximum value θmax=1.02  at ζ=8. Then the temperature starting 

to decrease with increasing depth.  

 

 

 

 

 

 

 

 

 

 
 

  Fig.4. Shows a comparison between profiles of dimensionless  

velocity u with parameters, E=0.25,Gr=60 ,Re=20, τ=-0.1, k=0.602 

, Pr=1.7.It is clear that in the porous case, the  values of u  are 

smaller than their  values in normal case (i.e., when k=0). 
 

Fig.5. Shows  a comparison between   profiles of dimensionless  

velocity v with parameters, E=0.25, Gr=60, Re=20, τ=-0.1, 

k=0.602, Pr=1.7. It is clear that in the porous case, the  values of v  

are smaller than their values in normal case (i.e., when k=0 ). 
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6.2. Conclusion  

      In this paper we have attempted to investigate the effect of the 

buoyancy forces on an Ekman Layer on a porous flat plate.  The 

systems of differential equations with the relevant boundary 

conditions have been written . The resulting differential equations 

represent this model have been solved for velocities given by 

equations (5.6) & (5.7), and temperature given by equation (5.10) .  

The results are illustrated by graphs. The appropriate boundary-

Layer equation, for this model involve one important parameter τ, 

which measures the velocities and temperature sensitivities to 

buoyancy forces arises from variation of density . Effects on 

velocities and temperature are illustrated in Fig.1.througlh Fig.5. 

The velocity distributions  u for different values of  τ  are given in 

Fig.1. It is shown that the values of velocities increases with 

increasing the  values of τ also the velocity distributions v for 

different values of τ are illustrated in Fig.2., the values of velocities 

increase with decreasing the  values of τ . The temperature 

distributions for different values of τ are illustrated in figure[3],the 

values of temperatures increases with decreasing the  values of τ. 

Fig.4. through Fig.5. Show the effect of porosity on the velocities 

distributions u and v, it has been  seen that when their values 

increasing the decreasing in the velocities profiles appear . 
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