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@  Abstract : 
        This research investigates the application 
of the QR - method for computing all the 
eigenvalues of the real symmetric tridiagonal 
matrix. The Householder method will be used 
for reduction of the real symmetric matrix to 
symmetric tridiagonal form, and then the so-
called QR - method with acceleration shift 
applies a sequence of orthogonal 
transformations to the symmetric tridiagonal 
matrix which converges to a similar matrix 
that is tridiagonal. This tridiagonal matrix 
possesses an eigenvalues similar to the 
eigenvalues of the symmetric tridiagonal 
matrix. Particular attention is paid to the shift 
technique that accelerates the rate of 
convergence. Computer algorithms for 
implementing the Householder's method and 
QR – method are presented. Computer Matlab 
programs for performing the Householder 
algorithm and the QR algorithm (with 
acceleration shift) are listed in the Appendix. 
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@1.  Introduction 

In 1950s Alston Scott Householder1   devised a method called 

Householder method [1] for reducing a given real symmetric n x n matrix 

A; that is, A = At 2, to a similar symmetric matrix in tridiagonal form; that 

is, the only nonzero entries in the matrix lie either on the diagonal or on 

the subdiagonals directly above or below the diagonal. This method has a 

wide application in areas other than eigenvalues3 approximation such as 

solving systems of linear equations. The method is much more stable than 

Gaussian elimination method. But this method takes more time to get the 

solution than Gaussian method does. 

Section two of this research, introduces the Householder's method. 

This method is used to construct a real symmetric tridiagonal matrix B 

that is similar to the given real symmetric n x n matrix A. 

It is well-known that (Theorem 9.10 of [1] and Theorem 8.39 of [2]) 

if A is an n x n symmetric matrix and D is diagonal matrix whose 

diagonal entries are the eigenvalues of A, then an orthogonal matrix4 Q 

exists with the property that D = Q-1AQ = QtAQ. A consequence of this 

is that the symmetric matrix A is similar to the diagonal matrix D. 

Because the matrix Q (and consequently D) is generally difficult to 

compute, Householder’s method offers a sequence of n-2 orthogonal 

transformations of the form PAP that will reduce A into a symmetric 

tridiagonal matrix. An orthogonal transformation of this form is called a 

Householder transformation (see [1], [2], [3], and [6] ).  

                                                 
1 1904-1993. 
2 At means the transpose of the n x n matrix A. 
3 The n x n matrix A has precisely n, not necessarily     
  distinct, eigenvalues (or characteristic value of the matrix 

A) that are the zeros of the characteristic polynomial  
P(λ ) = det ( A -λ I ) of A. 

4 An n x n matrix Q is said to be an orthogonal matrix  
     if Q-1 =  Qt (i.e., Qt Q = I, also Q Qt = I). 
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      The Householder’s method can be translated into computer algorithm 

to find symmetric tridiagonal matrix as a Householder reduction of a real 

symmetric  

n x n matrix A to symmetric tridiagonal form. An algorithm based on the 

Householder’s method is known as the Householder algorithm. This 

algorithm will be presented here in section three, and can be found in [1].  

Using the Householder algorithm we provide an example placed in 

section four which illustrates the procedure involved in the Householder 

algorithm.              

        The Householder’s method is one of the methods based on similarity 

transformations. This method will be used to convert a symmetric matrix 

into a similar matrix that is tridiagonal. Methods such as QR – method1 

can then be applied to the tridiagonal matrix for finding all eigenvalues 

 of a symmetric tridiagonal matrix ( see [6, p 601] ) to compute 

approximations to all eigenvalues. 

         Techniques such as the QR - method with acceleration shifts have 

been investigated in section five of this research. More generally, the QR 

- method is an efficient for the calculation of all eigenvalues of a square 

matrix whose entries are real numbers. If the matrix A is symmetric2 

tridiagonal matrix, then the QR - method can be used directly to find the 

eigenvalues of the symmetric tridiagonal matrix A. If the symmetric 

matrix A is not in tridiagonal form, the first step is to apply the 

Householder’s method to compute a symmetric tridiagonal matrix similar 

to, and hence with the same eigenvalues as the given matrix A.  

          Although, the QR - method will produce the eigenvalues 

 of symmetric tridiagonal matrix, but the rate of convergence is slow  

[6, p 603]. One easy way that speeds up the rate of convergence is to add 

                                                 
1 The QR – method was introduced by Francis. 
2  If A is symmetric matrix, the eigenvalues of A are   
      all real numbers [2, p.450]. This result will be     
      considered here for approximation of the   
      eigenvalues of the symmetric matrix A. 
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a shifting technique that will accelerate the rate of convergence when the 

QR – method with shifting [1, 6] is repeatedly iterated for producing all 

real eigenvalues of symmetric tridiagonal matrix.  

       There are several algorithms treating the QR – method [6], one of 

which we shall present in section six is named QR algorithm after the 

mathematician Francis, who introduced the QR – method (see [1] ). The 

diagonal entries of the reduced matrix into symmetric tridiagonal form 

using the QR algorithm which is based on the QR – method with 

acceleration shifts are approximations to the eigenvalues of the given 

symmetric matrix. 

         The presentation of the QR algorithm should not be the end, an 

investigation which illustrates the steps of the QR algorithm has been 

chosen as an example calculation, contained in section seven, to compute 

all eigenvalues of a symmetric tridiagonal matrix that arises from the 

application of the QR algorithm.  

         A computer programs ( or routines ) were written in Matlab 

software perform the Householder algorithm and QR algorithm for 

reducing the real symmetric matrix into the symmetric tridiagonal form, 

and for computing all the eigenvalues of a symmetric tridiagonal matrix 

respectively. The main computational routine is found for implementing 

the Householder algorithm   which calls the routine found for 

implementing the QR algorithm. The two programs listed in the 

Appendix, and those described and will also produce results cited in 

section eight. The results prove that the two computer algorithm programs 

work. 
 

2. Householder’s Method 

   Suppose that A is a real symmetric n  × n matrix, Householder's method 

will be used to construct a similar symmetric tridiagonal matrix by n-2 

orthogonal transformations. Each transformation annihilates the required 



  

    The Scientific Journal of The Faculty of Education                - vol.(1), No (2) January 2007        
   -  10  -

part of a whole column and whole corresponding row. The basic 

ingredient is a Householder n×n matrix P which has the form  

P = I - 2wwt 

where w∈Rn is a real vector with wtw = 1,   is called the Householder 

transformation.   

       Now, we shall investigate the most important properties of the 

Householder transformation P = I - 2wwt, w∈Rn.   

The symmetry is from 

      Pt = (I - 2wwt)t = It – (2wwt) 

          = I – 2(wt)t wt = I – 2wwt. 

 Further, the orthogonality is from  

    PPt = (I - 2wwt) (I - 2wwt)   

          = I - 4wwt + 4wwtwwt  

          = I - 4wwt + 4w(wt w)wt  

          = I – 4wwt + 4wwt = I.  

 So, P-1 = Pt = P.  

         Consider again the real symmetric n×n   matrix A, we shall follow 

[1], [3] and [6] to show that how one can construct a symmetric 

tridiagonal matrix A(n-1) similar to A = A(1) by applying the Householder 

method which determines a sequence of n-2 Householder transformations 

of the form PAP which will reduce A = A(1) to the symmetric tridiagonal 

matrix A(n-1).   

         The Householder method begins by determining a Householder 

transformation P(1) with the property that A(2) = P(1) A P(1) has aj1
(2)  = 0,  

for each j = 3,4, … ,n,       (2.1)                                                                                         

and by symmetry, a1j
(2) = 0. The vector  

w = (w1, w2,…, wn)
t is chosen that wtw = 1 so, equation (2.1) holds, and 

in the matrix A(2) =  

P(1) A P(1)= (I- 2wwt) A (I- 2wwt), we have  

     a11
(2 ) = a11 and aj1

(2) = 0, for each 
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 j = 3, 4, …, n. This choice imposes n conditions on the n unknown's w1, 
w2,… , wn. Setting w1 = 0 ensures that a11

(2) = a11. It is required that  
            P(1) = I- 2wwt  
to satisfy  
P(1)(a11, a21, a31, …, an1)

t =  
                     (a11, α, 0, … , 0)

t                               (2.2)                                           
where α will be chosen later. To simplify notation, let  

             
^

w
 = (w2, w3, ..., wn)

t ∈ Rn-1
,  

              
^

y
 = ( a21, a31, …, an1)

t ∈ Rn-1 

and 
^

P  be the (n-1)  × (n-1) Householder transformation  

                       
^

P = In-1 - 2
^

w
^

w
t. 

Equation (2.2) then becomes  

P(n-1) 





























1

31

21

11

.

.

.

na

a

a

a

 =  

































.0

..

..

..

..

.0

........

0....0.1

^

P

















^

11

.....

y

a   

                  =  

















^^

11

.....

yP

a
 = 































0
.

.

.
0

.....
11

α

a

 

with  

      
^
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y = (In-1 -2 
^

w
^

w
t )

^

y  

              = 
^

y  - 2(
^

w
t ^

y )
^

w                

              = (α, 0, ... , 0)t.                (2.3)                   Let r = 
^

w
t ^

y . Then 

      (α, 0, ..., 0)t =  
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      (a21 - 2rw2, a31 - 2rw3, …, an1 - 2rwn)
t, 

where wi can be determined when we know α and r. Equating 

components gives 

α = a21 - 2rw2    and   0 = aj1 - 2rwj, for each  

j = 3, … ,n. 

Thus,        

      2rw2 = a21 - α                                     (2.4)                                                                                         

and           

         2rwj = aj1, for each j = 3, ... ,n.        (2.5)                                           

Squaring both sides of each of the equations (2.4) and (2.5) and adding 

gives                     ( ) ∑∑
==

+−=
n

j
j

n

j
j aawr

3

2
1

2
21

2

224 α . 

Since wtw = 1 and w1 = 0, we have 1
2

2 =∑
=

n

j
jw , and                                                          

2
21

2

2
1

2 24 αα +−=∑
=

aar
n

j
j

.                                 (2.6)                                                                             

   Using equation (2.3) and the fact that P is orthogonal imply that  

α2 = (α, 0, …, 0)(α, 0, …, 0)t = 

  (
^

P
^

y )t 
^

P
^

y = 
^

y
t

^

P t
^

P
^

y = 
^

y
t ^

y . Thus,                                                                    

          ∑
=

=
n

j
ja

2

2
1

2α     

which, when substituted into equation (2.6), gives                                                               

             ∑ −
=

=
n

j
jar

2

2 2
12 αa21.   

To ensure that 2r2 = 0 only if  

           a21 = a31=…= an1 = 0, 

we choose                                   

              2/1

2

2
121 ))(sgn( ∑

=

−=
n

j
jaaα ,  
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this implies that   

  2r2 =∑
=

n

j
ja

2

2
1

+ |a21| 2/1

2

2
1)(∑

=

n

j
ja .  

   Using this choice of α and 2r2, we solve equations (2.2) and (2.6) to 
obtain  

  
r

a
w

2
21

2
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=   and  

r

a
w j

j 2
1=  , 

for each j = 3, … , n.  
   The choice of P(1) can be summarized as follows.                                             

       2/1

2

2
121 ))(sgn( ∑
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n

j
jaaα   

   2/1
21

2 )
2

1

2

1
( αα ar −= , 

      w1 = 0,
r

a
w

2
21

2

α−
= ,  and  

r

a
w j

j 2
1= ,    for each j = 3, ... ,n.This 

choice is used to obtain P, and hence A(2). Thus, the first Householder 
transformation is applied to the matrix A(1) = A and is denoted by   

  A(2) = P(1) A P(1)   

         =  
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   The second Householder transformation is applied to the matrix A(2) and 
is denoted by A(3) = P(2) A(2) A(2), the process is repeated for k = 3, …, n-2 

as follows.                             2/12
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r = (
2
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1
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 P(k) = I -2w(k)(w(k))t, and 

 A(k+1) = P(k) A(k) P(k), where 

A(k+1) =
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   Continuing in this manner, the symmetric tridiagonal matrix A(n-1) is 

constructed, where 

  A(n-1) = P(n-2) P(n-3) … P(1) A P(1)… P(n-3) P(n-2). 

 

3. Householder Algorithm 

   Given a real n x n symmetric matrix A; to obtain a symmetric 

tridiagonal matrix 

 A(n-1) similar to A = A(1),  is to construct the n-2 Householder 

transformation A(2), A(3), A(4), ... , A(n-1), where A(k) = (aij
(k)) for each k = 1, 

2, 3, …, n-1, using the Householder’s method. The following algorithm 

known as Householder algorithm ( see [1] for more details ) performs the 

Householder's method presented in section two. 

   The Pseudo-code of the Householder algorithm is outlined as follows. 

•     Set dimension(A) = n;  

•     Set matrix A           

% Construct the matrices A(2), A(3), A(4), ... ,    
       A(n-1)  
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•  for k = 1 to n-2 

• 
     

( )∑
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•     if  0)(
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•       )(
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,11
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         for j = k+2 to n 
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       end (for loop) 

•     for j = k to n 
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%   z = u - uvv
r

uuvv
mrs

tt
24

1

2

1 −=  

% = u – wwtu = wA
r

wwwA
r

ktk )()( 11 −  

% construct A(k+1) = A(k)-vzt-zvt= (I-2wwt)   

      A(k) (I - zwwt) 

•        for l = k+1 to n-1                           

•            for j = l+1 to n 

                                ijji
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                        end (for loop) 
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     end (for loop) 

•   end (A(n-1) is symmetric, tridiagonal,   
          and similar to A= A(1)). 
 

4. Illustrative Example    

   The 4×4 matrix                                                                          
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is symmetric. To illustrate the procedure involved in the Householder 
algorithm to transform (or reduce) this matrix into a matrix that is 
symmetric and tridiagonal similar to A = A(1); we perform the following 
computations.  
Set k = 1. 

2/1

2

2
121 ))(sgn( ∑

=

−=
n

j
jaaα  = (-)(1+4+4)0.5 = -3; 
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Set k = 2. 
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)2()2()2()3( PAPA =   
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. 

 The matrix A(3) is symmetric tridiagonal, and similar to the symmetric 

matrix A = A(1). 

 

 

5. QR - method 
        Suppose that A is a real symmetric matrix. In the preceding sections 

we saw how Householder's method is used to construct a similar 

tridiagonal matrix. In this section QR – method will be used to find all 

eigenvalues of the symmetric tridiagonal matrix (see [6, p 601]). The QR 

- method has proved very efficient and robust and has practically 

outperformed all other methods [3]. If the original matrix is not 

symmetric, it is recommended first to transform it to Hessenberg matrix 

form1 (In the symmetric case a tridiagonal matrix would be obtained.), 

then the QR - method will be applied for finding all eigenvalues of a 

general n x n real matrix, but it takes many iterations and becomes time 

consuming [7]. Plane rotations [2, pp.115-117] will be used to construct 

an orthogonal matrix Q(i) and an upper-triangular matrix R(i). The 

important step of the QR - method is QR factorization2 A(i) = Q(i) R(i) and 

                                                 
1  An n x n matrix A with ai,j = 0 for j > i + 1 is   
       called upper Hessenberg matrix; also when ai,j = 0   
       for i >  j+1, then  the matrix A is called lower   
       Hessenberg matrix.   
2 The QR factorization problem is defined as follows.    
     Given A ⊆ Rmxn, m >= n, rank(A) = n, compute  
      Q ⊆ Rmxm and R ⊆ Rmxn that satisfy A = QR,   

  Qt Q = I, ri,j = 0, for all i > j where ri,j is an individual   
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iteration  A
(i+1) = R(i) Q(i) = (Q(i))t A(i) Q(i), taken into account that the 

matrix A(i+1)
 is in tridiagonal form. The QR factorization arises in many 

applications like solving the least squares problem, eigenvalue 

decomposition, singular value decomposition etc.  

         We shall follow [1], [3], [4], [6], and [7] to investigate how the QR 

- method applies a sequence of orthogonal transformations Q(i) to the 

symmetric tridiagonal matrix obtained by the Householder's method. 

        Suppose that the symmetric tridiagonal matrix A is written as  

A = 
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If 002 == nborb , then the 1×1 matrix[ ] [ ]naora1  has an eigenvalues 

a1 or an of A. If bj = 0 for some j, where 2 < j < n, then the problem can be 

reduced to considering, instead of A, the smaller matrices are   
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  component of R. 
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    Now, suppose that bj ≠  0 for all j, the QR - method produces a 

sequence of matrices A(1) = A, A(2), A(3), ... , as follows. 

� A(1) = A  is factored as a product   

 A(1) = Q(1) R(1) where Q(1) is orthogonal   

 matrix, and R(1) is upper triangular   

 matrix. 

� A(2) is defined as A
(2) = Q(1) R(1). 

   In general, construct the orthogonal matrix Q(i) and upper-triangular 

matrix R(i) so that     

        A
(i) = Q(i) R(i).  

Then define  

        A(i+1) = R(i) Q(i) .  

Orthogonality of Q(i) implies that  

        R(i) = (Q(i))tA(i), and     

            A(i+1) = R(i) Q(i) = ((Q(i))tA(i))Q(i)  

                      = (Q(i))tA(i)Q(i).                   (5.3) 

       This implies that A(i+1) and A(i) are similar. An important 

consequence is that A(i) is similar to A and hence has the same structure. 

Specifically, one can conclude that if A is tridiagonal then A(i) is also 

tridiagonal for all i. The process is continued, and by induction, A(i+1) has 

the same eigenvalues as the original matrix A, and  A
(i+1) becomes a 

diagonal matrix with the eigenvalues of A along its diagonal. 

        In order to construct the matrices Q(i) and R
(i), a rotation matrix1 will 

be used. 

         It is obvious that, for any rotation matrix P, the matrices AP and PA 

differs from A only in the ith and jth columns, and in the ith and jth rows 

respectively. For any i ≠ j, the angle ϕ can be chosen so that the product 

                                                 
1 A rotation matrix P differs from the identity matrix in   
         at most four elements. These four elements are of the       
         form  pii = pjj = cosϕ , and pij = - pji = sinϕ  for   

         someϕ and some  i ≠ j. 
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PA has a zero element for (PA)ij. Since each plane rotation is presented by 

an orthogonal matrix,  .IPP t =  

      The factorization of A(1) into A(1) =  

Q(1) R(1) uses a product of n-1 rotation matrices to construct  

                    R(1) = 
21...PPP nn −
 A(1)   

The first step is to choose the rotation matrix 
2P with                          

2211222211 sincos ϕϕ =−=== ppandpp ,where       

.cos,sin
2
1

2
2

1
22

1
2
2

2
2

ab

a
and

ab

b

+
=

+
= ϕϕ  

Then the matrix 

                         A2
(1) =P2 A

(1) 

has a zero in the (2, 1) subscript, since the (2, 1) subscript in A2
(1) is           

.0)(cos)sin(
2
1

2
2

21

2
1

2
2

12
2212 =

+
+

+

−
=+−

ab

ba

ab

ab
ba ϕϕ  

Since the multiplication P2 A
(1)

 affects both rows 1 and 2 of A(1), the new 

matrix does not necessarily retain zero elements in the positions (1, 3), (1, 

4),… and (1, n). However, A
(1) is tridiagonal, so the (1, 4),…, (1, n) 

subscripts of A2
(1) must be 0. Only the (1, 3) subscript, the one in the first 

row and third column, can become nonzero. 

   In general, the plane rotation matrix Pk that reduces to zero the element 

of A in position (k, k-1); that is, Ak
(1)

 =Pk Ak-1
(1)

    . Continuing in similar 

way, a plane rotation matrix Pk+1 that will reduce to zero the element of Pk 

located in position (k-1, k+1). The matrix Ak
(1)

 has the form  
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and Pk+1 has the form 

Ak+1 =























−

−−

++

++

−

1

11
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1

kn

kk

kk

k

IOO

cs

OO

sc

OOI

    row    (5.4) 

                   Column k 

where O denotes the appropriately dimensional matrix with all zero 

elements. 

   The sequences 

        11 cos ++ = kkc ϕ and 11 sin ++ = kks ϕ in Pk+1 are chosen so that the (k+1, 

k) element in )1(
1+kA  is zero; that is, 0111 =− +++ kkkk bcxs . Since 

,12
1

2
1 =+ ++ kk sc  the solutions of this equation are given by                            

,
22

1

122
1

1
1

kk

k
k

kk

k
k

xb

x
cand

xb

b
s

+
=

+
=

+

+

+

+
+   
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and A )1(
1+k  has the following form                     
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The process is repeated with this construction in the sequence P2, …, Pn 

produces the upper-tridiagonal matrix 

                         

                 

            

R(1) 
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)1(  

It remains the factorization of the matrix  

        Q(1) ,...32
t

n
tt PPP=  

using the QR – method. 

 Since the orthogonality of the rotation matrices implies that                                          

Q(1) R(1) =  ( t
n

tt PPP ...32 ) ( t
n

tt PPP ...32 ) 

              = A(1) 

The matrix Q(1) is orthogonal since   

(Q(1))t Q(1)

IPPPPPP

PPPPPP
t

n
tt

n

t
n

ttt
n

tt

==

=

)...).(...(

)....).(....(

3223

3232  
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where, Q(1) is an upper Hessenberg matrix. Therefore, A(1) =R(1)Q(1)  is 

also an upper Hessenberg matrix. Multiplying Q(1) on the left by the 

upper-triangular matrix R(1) does not affect the elements in the lower 

triangle. This implies that A(2) is in tridiagonal form, since it is 

symmetric. 

   The elements off the diagonal of A(2) will generally be smaller in 

absolute value than the corresponding elements of A(1), so A(2)  is closer 

to being a diagonal matrix than is A(1). The process is repeated until A(3), 

A(4),… are constructed.  

 

5.15.15.15.1. . . . Acceleration Shift TechniqueAcceleration Shift TechniqueAcceleration Shift TechniqueAcceleration Shift Technique    

       Although, the QR - method works much faster on special matrices 

such as symmetric tridiagonal matrices, Hessenberg matrices, and 

symmetric band matrices, comparing with other types of matrices, but 

convergence is still slow even for matrices of small dimension. Adding 

shifting technique speeds up the rate of convergence [1] and [6]. 

      Assume that the eigenvalues of A are1λ , 2λ , …, nλ , 

where nλλλ >>> L21 . The diagonalization process is started with 

this matrix.  

The rate of convergence of the element )1(
1
+

+
i

jb  to zero in the matrix A(i+1) 

depends on the ratio jj λλ /1+ . The rate of convergence of )1(
1
+

+
i

jb  to zero 

determines the rate at which the element )1( +i
ja converges to the jth 

eigenvalue jλ . Thus, the rate of convergence can be slow if the ratio 

jj λλ /1+  ≈ 1. In order to accelerate the rate of convergence a shifting 

technique will be used as follows.  

   A constant σ  is selected near to an eigenvalue of A. This idea is 

incorporated in the modified the factorization in equation (5.3) to 

choosing Q(i) and R(i), so that  
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             A(i) -σ  I = Q(i) R(i)                      (5.5)                          

then form   

              A(i+1) = R(i)Q(i) +σ  I                  (5.6)                         

This modification implies that, the rate of convergence of )1(
1
+

+
i

jb to zero 

depends on the ratio )/()( 1 σλσλ −−+ jj .   

If σ is chosen so that σ ≈ 1+jλ , butσ jλ  then the original rate of 

convergence of  )1( +i
ja to jλ is determined. 

   The valueσ in equation (5.5) is changed at each iteration so that when 

A has distinct eigenvalues then )1(
1
+

+
i

jb  converges to zero faster than )1( +i
jb for 

any integer j < n.  

 Let )1( +≈ i
nn aλ  and )1( +i

nb is sufficiently small, delete the nth row and column 

of the matrix, and continue in the same way to find an approximation 

to 1−nλ . Then QR iterating with shifting is repeated until an approximation 

has been found for each eigenvalue.  

   The shifting technique chooses at the ith iteration, the shifting 

constant iσ , where iσ  is the eigenvalue of the matrix  

                    E(i) = 






 −
)()(

)()(
1

i
n

i
n

i
n

i
n

ab

ba
 

that is closest to )(i
na . This shift translates the eigenvalues of A by a 

factor iσ .  

The method collects these shifts until 0)1( ≈+i
nb  and then adds the shifts to 

)1( +i
na for approximation of the eigenvaluenλ . 

    If A has eigenvalues of the same absolute value then )1( +i
jb approaches 

zero for some nj ≠  at a faster rate than )1( +i
nb . 

Successive iteration is applied to smaller pair of submatrices obtained by 

the matrix splitting technique is described in (5.2). 
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6666.... QRQRQRQR    AlgorithmAlgorithmAlgorithmAlgorithm    

       There are several algorithms [3] treating the QR - method for finding 

the eigenvalues of the symmetric tridiagonal n × n matrix 

























==
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)1(

)1(
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)1(
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)1(
2

)1(
1

)1(

0..0
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.

.
0...0

..

0.0

nn

n

ab

b

ab

ba

AA .  

The QR algorithm (for more details see [1] and [3]) that we shall present 

can be found in and. The Pseudo-code of the algorithm is as in the 

following. 

•  Set dimension n; ;,...,,,..., )1()1(
2

)1()1(
1 nn bbaa  

   tol; maximum number of iterations m.   

•  k = 1; 

% collected shift 

•  shift = 0;     

•  while k ≤  m do 

•  if tolb k ≤)(
2  then    

      += )(k
naλ shift; 

      display );(λ  

       n = n-1; 

       if tolb k ≤)(
2  then   

          ;)( shifta k
n +=λ  

          display );(λ  

           n = n-1; 

          ;)(
2

)(
1

kk aa =  
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       for j = 2, … ,n 

          ;)(
1

)( k
j

k
j aa +=  )(

1
)( k

j
k

j bb += ; 

•  if n = 0 then pause 

•  if n = 1 then )(
1

ka=λ + shift; 

       display );(λ  

       pause. 

•  for j = 3, … ,n-1  

       if tolb k ≤)(
2  then display (‘split into’, 

                  ,,...,,,..., )(
1

)(
2

)(
1

)(
1

k
j

kk
j

k bbaa −−  ’and’, ,,...,,,..., )()(
1

)()( k
n

k
j

k
n

k
j bbaa + shift); 

   pause 

% compute shift 

•  );( )()(
1

k
n

k
n aab +−= −         

    ;][ 2)()(
1

)( k
n

k
n

k
n baac −= −  

    2/12 )4( cbd −= ; 

•  if b > 0 then );/(21 dbc +−=µ  

                       ;2/)(2 db +−=µ  

               else ;2/)(1 bd −=µ  

                      )/(22 bdc −=µ ; 

•  if n = 2 then ;11 shift+= µλ  

                         ;22 shift+= µλ  

                          display );,( 21 λλ  

                          pause. 

% chooseσ so that 

• { })(
2

)(
1

)( ,.min k
n

k
n

k
n aaa −−=− µµσ ; 

% accumulate the shift 

• σ++ shiftshift ; 
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% perform shift  

•  for j = 1, … ,n      

      σ−= )(k
jj ad ;  

% compute R(k)     

• ;11 dx =  21 by = ; 

•  for j = 2, … ,n 

       2)(
1

2
1 ][ k

jjj bxsqrtz += −−  

        ;
1

1

−

−=
j

j
j z

x
c  ;

1

)(

−

=
j

k
j

j z

b
σ  

        ;11 jjjjj dsycq += −−  

        ;1 jjjjj dcyx +−= −σ  

         if nj ≠ then ;)(
11

k
jjj br +− = σ  

                             )(
1

k
jjj bcy ++ ; 

%    )(
1

)( k
jj

k
j ApA −=  has just been computed   

           and R(k) = A(k)  

%   compute A(k+1) 

•  ;nn xz =   

              ;1212
)1(

1 zcqa k +=+ σ 22
)1(

2 zb k σ=+ ; 

•  for j = 2, 3, …, n-1  

               ;11
)1(

jjjjj
k
j zccqa ++

+ +=σ 11
)1(

1 ++
+

+ = jj
k

j zb σ ; 

•  nn
k

n zca =+ )1( ; 

• k = k + 1; 

•  End. 

 

7777. . . . An Example CalculationAn Example CalculationAn Example CalculationAn Example Calculation 
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   We shall illustrate the use of the QR algorithm described in the 

previous section for approximation of the eigenvalues of the symmetric 

tridiagonal 3 × 3 matrix 
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A .           

   To follow the steps of the QR algorithm, for computing the eigenvalues 

of A, let 
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ab

bab
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We have n = 3. 

Let k = 1. 

shift = 0. 

b = - ( ))1(
3

)1(
2 aa + = -6; 

c = 2)1(
3

)(
2

)1(
3 ][baa k −  = 8; 

d = (b2 – 4c)0.5 = 2. 

Since b < 0 so continuing the computation gives  

       ;4
2

)(
1 =−= bdµ  

          ;2
)(

2
2 =

−
=

bd

cµ  

Chooseσ so that 

    { })1(
32

)1(
31

)1(
3 ,.min aaa −−=− µµσ  

;21 =σ  

σ++ shiftshift  = 0 + 2 = 2; 

Find σ−= )1(
jj ad , j = 1, 2, 3 
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Continuing the computation gives             
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In order to compute )2(A , we have                              

.0;
2

2
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2

;
2

2
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 ∴ A(2) = R(1) Q(1)
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The first iteration of the QR - method is completed. Since neither 

,
2

2)2(
2 =b  nor 

2

2)2(
3

−=b  is small, iteration two of the QR - method is 

performed as follows.  

 

Let k = 2.  

shift = 0. 

b = - ( ))2(
3

)2(
2 aa + = -1; 

c = 2)2(
3

)2(
2

)2(
3 ][baa −  = - 0.5; 

d = (b2 – 4c)0.5 = 3 . 

Since b < 0 so continuing the computation gives         

      3
2

1

2

1
2,1 ±=µ      

Chooseσ so that 

    { })2(
32

)2(
31

)2(
3 ,min aaa −−=− µµσ  

     3
2

1

2

1
1 −=σ  

Find σ−= )2(
jj ad , j = 2, 3 

)2(
1A = 

















−
−

3660.07071.00000.0

7071.03660.17071.0

0000.07071.03660.2
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;6775.0;2025.0

sin;;1063.1;1063.1

;2863.0;9581.0;4694.2

:3,2

;7071.0;3660.2
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bydx
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Further, 
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 ∴ )2(R ≡ )2(
3A =
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0563.00000.00000.0
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Computing A(3) is required to find     

.3759.0;6720.2;0563.0 2
)2(

1
2

33 ==−== baxz

;0476.0;0304.0;4736.1

3,2

3
)2(

3
)3(

2
)3( −===

=
aba

jFor
                                               

















−
=

0746.00304.00000.0

0304.04736.13759.0

0000.03759.06720.2
)3(A . 

If 0304.0)3(
3 =b is sufficiently small, then the approximation to the 

eigenvalue 3λ is 1.5864, the sum of 0476.0)3(
3 −=a and the 

shift
2

)31(
221

−+=+ σσ . Deleting the third row and column gives              

                  ,
4736.13759.0

3759.06720.2)3(








=A  
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which has eigenvalues 7802.21 =µ and  3654.12 =µ . Adding the shifts 

gives the approximations 4142.41 ≈λ and 9994.22 ≈λ . Since the actual 

eigenvalues of the matrix A are 4.4142, 3.0000, and 1.5858, then the QR 

- method gave the approximation to the eigenvalues in two iterations 

only. 

 

8888. . . . Computer ImplementationComputer ImplementationComputer ImplementationComputer Implementation and Resultsand Resultsand Resultsand Results   

    

    8.18.18.18.1. . . . ImplemenImplemenImplemenImplementationtationtationtation 

       The above described two algorithms (Householder and QR 

algorithm) were implemented in Matlab software programming language. 

The two Matlab functions, namely ("Program 1" & " Program 2") in the 

Appendix are written as a function M - files (see [5] for details on Matlab 

programming language and its availability) Householder.m and 

QR_method_shift.m. The Matlab Program 1 shows a direct 

implementation of the Householder algorithm and can be used to reduce a 

real symmetric matrix A to a similar tridiagonal matrix. The Matlab 

Program 2 uses the QR algorithm with acceleration shifts to approximate 

all the eigenvalues of the real symmetric tridiagonal matrix obtained by 

Matlab Program 1. The function M-file QR_method_shift.m (Program 2) 

called by the function M-file Householder.m ( Program 1). The Matlab 

Program 2 follows from the QR algorithm, but with the following 

exceptions: 

   - The Matlab command eig is used to approximate the eigenvalues of 

the matrix    

             E(i) = 






 −
)()(

)()(
1

i
n

i
n

i
n

i
n

ab

ba
. 

   - The QR factorization of the matrix  
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A(i) -σ  I = Q(i) R(i) is executed using the Matlab command [Q,R] = qr(E). 

This command produces an orthogonal matrix Q(i) and upper-triangular 

matrix R(i), such that  

E(i) = Q(i)R(i) .  
8.2. Results  

                      

   Running the Householder and QR algorithm programs ("Program 1" & 

"Program 2") from the Appendix on this input gives the following results. 

 

1. The original (n x n) symmetric matrix is:  

  

    A=A^(1) = 

  

     4     1    -2     2 

     1     2     0     1 

    -2     0     3    -2 

     2     1    -2    -1 

  

 2. The symmetric tridiagonal matrix A^(n- 

     1) similar to A = A^(1) using   

     Householder algorithm is: 

  

    A^(n-1) = 

  

    4.0000   -3.0000              0             0 

   -3.0000    3.3333    -1.6667             0 

              0   -1.6667   -1.3200    0.9067 

              0              0    0.9067    1.9867 

  

 3. The eigenvalues of the symmetric     

     tridiagonal (n×n) matrix A^(n-1) using   
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     QR-method with acceleration shift is: 

  

    6.8446 

   -2.1975 

    1.0844 

    2.2685. 
       

9999. . . . ConclusionsConclusionsConclusionsConclusions    

        Given a real symmetric matrix A, an eigenvalues of A can be 

approximated by the QR – method after application of the Householder's 

method which reduces A to tridiagonal form. Shifting techniques aided in 

computing eigenvalues of the matrix A for accelerating the rate of 

convergence. Two algorithms were given to efficiently utilize the 

approximation of the eigenvalues of the matrix A, namely Householder 

and QR algorithms are those describe Householder's and QR – methods. 

Examples have been rendered which illustrates the two algorithms based 

on the two methods. A Matlab implementations of the Householder 

algorithm and QR algorithm which are coded as a Matlab functions 

(Householder.m and QR_method_shift.m) implement those algorithms. 

The results obtained by executing the Matlab functions. This results 

shows that there is some accuracy and performance improvement for 

approximation of eigenvalues of the real symmetric matrix A when going 

from the numerical procedure solution obtained without aid of computer 

to the fast computer procedure solution obtained either by the 

Householder's method, or by the QR – method. 
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Appendix 

Program 1 

    This Matlab program implements the Householder reduction of (n x n) 

symmetric matrix to symmetric tridiagonal form. 

 

function H=Householder (A) 

clc; disp (' '); 

A=[4 1 -2 2;1 2 0 1;-2 0 3 -2;2 1 -2 -1]; 

disp( '1. The original (n x n) symmetric matrix is:'); disp(' '); disp( '    

A=A^(1)=');disp(' '); disp(A); 

[m,n]=size(A); 

m=n; 

% Construct (n-2) Householder   

      transformations. 

for k=1: n-2 

   q=0; 

   for j=k+1: n 

      q=q+A (j, k) ^2; 

   end 

   % Compute alpha 

   if A (k+1, k)==0  

      alpha=-sqrt (q); 

   else 

      alpha= 

   (-sqrt (q)*A (k+1, k))/ (norm (A (k+1, k))); 

   end 

   mrs=alpha^2-alpha*A (k+1, k); 

   % Notice that mrs=2*r^2 

   % Construct v 

   v (k) =0; 

   v (k+1) =A (k+1, k)-alpha; 

   for j=k+2: n 

      v (j) =A (j, k); 

   end 

   % Construct u 

   for j=k: n 
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      u (j) =0; 

      for i=k+1: n 

         u (j) =u (j) +A (j, i)*v (i); 

      end 

      u (j) =u (j)/mrs; 

   end 

   mult=0; 

   for i=k+1: n 

      mult=mult+v (i)*u (i); 

   end 

   for j=k: n 

      z (j) =u (j)-(mult/ (2*mrs))*v (j); 

   end 

   % Construct the matrices A(2), A(3),   

        A(4), ..., A(n-1).  

   for l=k+1: n-1 

      for j=l+1: n 

         A (j, l) =A (j, l)-v (l)*z (j)-v (j)*z (l) ; 

         A (l, j) =A (j, l);        

      end 

      A(l,l)=A(l,l)-2*v(l)*z(l); 

   end 

   A (n, n) =A (n, n)-2*v (n)*z (n); 

   for j=k+2: n 

      A (k, j) =0; A (j, k) =0; 

   end 

   A (k+1, k) =A (k+1, k)-v (k+1)*z (k); 

   A (k, k+1) =A (k+1, k); 

end 

disp(' '); 

disp( ' 2. The symmetric tridiagonal matrix A^(n-1) similar to A = A^(1) 

using   

     Householder algorithm is:');disp(' '); 

disp( '    A^(n-1) =');disp(' '); 

disp(A); 

epsilon=eps; 
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QR_method_shift(A,epsilon); 

Program 2 

    This Matlab program implements the QR- method with acceleration shifts for 

computation the eigenvalues of the symmetric tridiagonal  

(n x n) matrix A(n-1) obtained by the Householder's method. 
 
function D=QRMWAS(A,epsilon) 

[m,n]=size(A); 

m=n; 

D=zeros(n,1); 

E=A; 

while (m>1) 

    while (abs(E(m,m-1))>=epsilon) 

        % calculate shift. 

        sigma=eig(E(m-1:m,m-1:m)); 

        [i,j]=min([abs(E(m,m)*[1,1]'-sigma)]); 

        % QR factorization of E. 

        [Q,R]=qr(E-sigma(j)*eye(m)); 

        % Calculate next E. 

        E=R*Q+ sigma(j)*eye(m); 

    end 

    % Place mth eigenvalue in A(m,m). 

    A(1:m,1:m)=E; 

    % Repeat process on the (m-1)x(m-1)    

         submatrix of A. 

    m=m-1; 

    E=A(1:m,1:m); 

end 

m=n; 

disp(' '); 

disp(' 3. The eigenvalues of the symmetric     

     tridiagonal (n×n) matrix A^(n-1) using   

     QR-method with acceleration shift is:');disp(' ');  

disp(diag(A)) 
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