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Abstract :

This research investigates the application
of the QR - method for computing all the
eigenvalues of the real symmetric tridiagonal
matrix. The Householder method will be used
for reduction of the real symmetric matrix to
symmetric tridiagonal form, and then the so-
called QR - method with acceleration shift
applies a sequence of orthogonal
transformations to the symmetric tridiagonal
matrix which converges to a similar matrix
that is tridiagonal. This tridiagonal matrix
possesses an eigenvalues similar to the
eigenvalues of the symmetric tridiagonal
matrix. Particular attention is paid to the shift
technique that accelerates the rate of
convergence. Computer algorithms  for
implementing the Householder's method anc
QR — method are presented. Computer Matlak
programs for performing the Householder
algorithm and the QR algorithm (with
acceleration shift) are listed in the Appendix.
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1. Introduction

In 1950s Alston Scott Householder devised a method called
Householder method [1] for reducing a given reahisyetric n x n matrix
A; that is, A = A2 to a similar symmetric matrix in tridiagonal forthat
is, the only nonzero entries in the matrix lie eitlon the diagonal or on
the subdiagonals directly above or below the diagorhis method has a
wide application in areas other than eigenvalegsproximation such as
solving systems of linear equations. The methadush more stable than
Gaussian elimination method. But this method takese time to get the
solution than Gaussian method does.

Section two of this research, introduces the Hoolsken's method.
This method is used to construct a real symmetidtagonal matrix B
that is similar to the given real symmetric n x atrnx A.

It is well-known that (Theorem 9.10 of [1] and Thexm 8.39 of [2])
if Ais an n x n symmetric matrix and D is diagomahtrix whose
diagonal entries are the eigenvalues of A, theworédmogonal matrix4 Q
exists with the property that D = Q-1AQ = QtAQ. Ansequence of this
Is that the symmetric matrix A is similar to theaglonal matrix D.
Because the matrix Q (and consequently D) is gdénedificult to
compute, Householder's method offers a sequence-&forthogonal
transformations of the form PAP that will reduceimto a symmetric
tridiagonal matrix. An orthogonal transformationtbfs form is called a
Householder transformation (see [1], [2], [3], §61).

1 1904-1993.

2 A' means the transpose of the n x n matrix A.

% The n x n matrix A has precisely n, not necesgaril
distinct, eigenvalues (or characteristic valuéhef matrix
A)that are the zeros of the characteristic polynomial
P(A)=det (A-A1)of A.

4 An n x n matrix Q is said to be an orthogonal imatr

ifQ'= Q'(l.e.,Q' Q=1,alsoQ Q"= ).
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The Householder’'s method can be translatedaomputer algorithm
to find symmetric tridiagonal matrix as a Houseleolteduction of a real
symmetric
n x n matrix A to symmetric tridiagonal form. Angakithm based on the
Householder's method is known as the Householdgori#thm. This
algorithm will be presented here in section thee®] can be found in [1].
Using the Householder algorithm we provide an exammaced in
section four which illustrates the procedure ineolhin the Householder
algorithm.

The Householder's method is one of the pathhased on similarity
transformations. This method will be used to cohaesymmetric matrix
into a similar matrix that is tridiagonal. Methosisch asQR — method
can then be applied to the tridiagonal matrix foding all eigenvalues
of a symmetric tridiagonal matrix ( see [6, p 601l]to compute
approximations to all eigenvalues.

Techniques such as tQ&R - method with acceleration shifts have
been investigated in section five of this reseaktbre generally, th&@R
- method is an efficient for the calculation of eljenvalues of a square
matrix whose entries are real numbers. If the mafiis symmetrié
tridiagonal matrix, then th®R - method can be used directly to find the
eigenvalues of the symmetric tridiagonal matrix IA.the symmetric
matrix A is not in tridiagonal form, the first steis to apply the
Householder’'s method to compute a symmetric trioliad matrix similar
to, and hence with the same eigenvalues as tha gratrix A.

Although, the QR - method will produce the eigenvalues
of symmetric tridiagonal matrix, but the rate adngergence is slow
[6, p 603]. One easy way that speeds up the raterofergence is to add

! TheQR — method was introduced by Francis.

2 |f Ais symmetric matrix, the eigenvalues of Aear
all real numbers [2, p.450]. This result vod
considered here for approximation of the
eigenvalues of the symmetric matrix A.
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a shifting technique that will accelerate the mfteonvergence when the
QR — method with shifting [1, 6] is repeatedly ite@tfor producing all
real eigenvalues of symmetric tridiagonal matrix.

There are several algorithms treating @@ — method [6], one of
which we shall present in section six is nanG@d algorithm after the
mathematiciafrrancis, who introduced th@R — method (see [1] ). The
diagonal entries of the reduced matrix into symiodtidiagonal form
using the QR algorithm which is based on th@R — method with
acceleration shifts are approximations to the aigkres of the given
symmetric matrix.

The presentation of th@R algorithm should not be the end, an
investigation which illustrates the steps of QR algorithm has been
chosen as an example calculation, contained inogeséven, to compute
all eigenvalues of a symmetric tridiagonal matimatt arises from the
application of theQR algorithm.

A computer programs ( or routines ) werdtten in Matlab
software perform the Householder algorithm a@@& algorithm for
reducing the real symmetric matrix into the symigetridiagonal form,
and for computing all the eigenvalues of a symrodtidiagonal matrix
respectively. The main computational routine isnidwdor implementing
the Householder algorithm which calls the routifeund for
implementing the QR algorithm. The two programs listed in the
Appendix, and those described and will also prodiesults cited in
section eight. The results prove that the two caepaigorithm programs
work.

2. Householder's Method

Suppose that A is a real symmetrie m matrix, Householder's method

will be used to construct a similar symmetric taglbnal matrix by n-2
orthogonal transformations. Each transformationilalates the required
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part of a whole column and whole corresponding rdve basic
ingredient is a Householdexkmmatrix P which has the form
P=1-2ww
where WIR" is a real vector with tw = 1, is called the Householder
transformation.
Now, we shall investigate the most importamoperties of the
Householder transformation P = | - 2\yw(R".
The symmetry is from
P=(-2wwW)'=I' = (2ww)
=1 —2W'w = 1 — 2ww.
Further, the orthogonality is from
PP=(I-2ww) (I - 2ww)
= | - 4w+ dwwww'
= | - A+ dw(w w)w'
= | — AW+ dww = I.
So, P'=P=P.

Consider again the real symmetro n matrix A, we shall follow

[1], [3] and [6] to show that how one can constratsymmetric
tridiagonal matrix A" similar to A = AV by applying the Householder
method which determines a sequence of n-2 Househtahsformations
of the form PAP which will reduce A =® to the symmetric tridiagonal
matrix A",

The Householder method begins by detengiaiHouseholder
transformation P with the property that ®= PV A P has @ = 0,
foreachj=3,4, ... ,n, 2.1
and by symmetry,.&” = 0. The vector
w = (wi, W2,..., w,)' is chosen that w = 1 so, equation (2.1) holds, and
in the matrix A% =
PO A PY= (1- 2ww) A (I- 2ww'), we have

a:?)=ajand a®=0, for each
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j=3,4, ..., n. This choice imposes n conditionglte n unknown's w
Wa,..., Wy, Setting w = 0 ensures that &) = a. It is required that

= - 2ww
to satisfy
P(l)(all, 1, AL -y au)t =
@ a0, .0 (2.2)

wherea will be chosen later. To simplify notation, let

A

w = (Wz, Ws, ..., V\(~|)t | Rn-ll

v = (@ a ..., &) OR™

and P be the (n-1) (n-1) Householder transformation

N N N

P=ln1- 2w w'.
Equation (2.2) then becomes

r - 1.0 . . . .0
ay
P(n—l) Az = lo . ay
Qg | |
. y,\
. P
[ &n1 ] O
_all_
_[ au _ a
P y" X
_O_

with
Py=(ni2ww')y
=y - 2(w'y)w
=¢,0, ..., 0) (2.3) Letiw'y . Then
@0, .., 0)=
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(@1- 2rWa, @1~ 2IWa, ..., &h1- 2MWh)',
where wcan be determined when we knavand r. Equating
components gives
a=a;-2m, and 0 =a- 2rw, for each

]=3,...,n.
Thus,

2rg = a3 - a (2.4)
and

2ry= g, foreach j=3, ... ,n. (2.5)
Squaring both sides of each of the equations ¢hd)(2.5) and adding

gives 4r 2 Zn:wf =(a, —a)*+ Zn:afl :
i=3

j=2

Since iw = 1 and w= 0, we havzn“WJ? -1, and

j=2
4r? =% a’ —20a, +a’. (2.6)
j=2
Using equation (2.3) and the fact that P isagtnal imply that
a’=(q,0, ..., 06,0, ..., 0) =

(Py)Py=y'PPy=yly.Thus,
n
a’=>a}
j=2
which, when substituted into equation (2giyes
2_\,2 )
2r —;a i1~ 08,

To ensure that 2¢ 0 only if
1= a=...= a1=0,
we choose

a =-sgn@,,)(D a%)"*
j=2
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this implies that
2 =5 o o+ lal (Y a%) 2.
i=2 j=2

Using this choice af and 2f, we solve equations (2.2) and (2.6) to
obtain

_ a
8170 and =

W,

2r o2
foreachj=3, ..., n.
The choice of ® can be summarized as follows.

a =-sgn@,)(Q a})"?
j=2

r= (%cr2 —%aﬂa)l’z,
W= 0,w, :ﬂ, and w. :ﬂ, foreachj=3, ... ,n.This
2r boor

choice is used to obtain P, and hené?é./-Khus, the first Householder

transformation is applied to the matrix"A= A and is denoted by
A@ = B A PO

42 (2)
a; a;; 0 0
2 (2) (2) )
a7 QA Qo Ay,
- (2) (2) (2)
- 0 as; a3 - Qg |-
(2 (2 (2
L 0 Qo Ay Ay |

The second Householder transformation is appbetie matrix A and
is denoted by B = P? A® A® the process is repeated fork = 3, ..., n-2

n
as follows. a =-sgn@l), (> (@)%,
j=k+1
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1 1 a -a
r=(=0®- Zod¥ ) @2, w=w= .= w"= Ow() = Ztk =
2 2 2r

k

W :% foreachj=k+2,k+3, ... n,
r

P9 = | 2wOw®), and
A(k+1) = Fik) A(k) P(k) where

e -
6%33 a§k2 D 9 e 0
) .
217
0 0 - 0
: L) (k) (D) (kD)
NG = ' ©okHk kL ki kL k22 kel
= o :
N
i 0 0 an Kl 3n |

Continuing in this manner, the symmetric tridingl matrix A" is
constructed, where

ACD = BRI P E A B pin) p0)

3. Householder Algorithm

Given a real n x n symmetric matrix A; to obtain symmetric
tridiagonal matrix
A" similar to A = AY,  is to construct the n-2 Householder
transformation &), A®, A® A" where A9 = (%) for each k = 1,
2, 3, ..., n-1, using the Householder's method. TdioWwing algorithm
known as Householder algorithm ( see [1] for magtais ) performs the
Householder's method presented in section two.

The Pseudo-code of the Householder algorithouisned as follows.
* Setdimension(A) = n;
* Set matrix A

% Construct the matricesA A® A®,
A(n-l)
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e fork=1ton-2

 q= )

j=k+1

o f aﬁkik =0theng =-q%?
1/2 (k)
elsg = -%
2]

% let mrs = 27
* nmrs=a’-aaly,
% thereis no need@g: =0 =0
* 0y, =0
U = a&)l,k -a
forj=k+2ton

— A (K)
v, = aj

% w =(
2mrs 2r

end (for loop)
e forj=kton

o =[] ay

Mrs Jizica

(k)

%(i) A v =i2A<k>v G
mrs 2r r

. mult = > v,

i=k+1

1
% mult=Vlu=u= thA"‘)v
r

end (for loop)
e forj=kton

[2ms)
® Z =U —-|— U
b\ 2mrs )
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1
viuv =u-——Vv'uv
2nrs 4r

% z=u-

% =u—wwiu = AWw-wwt L A©w
r r

% construcA®* Y = AM-vZ-2/= (1-2ww/)
AY (1 - 200)

. for | = k+1 ton-1

forj=I1+1ton

k) — 00 _ ) _
aji _aji Ulzj sz
(k+1) — A (k+1)
a; ~ =a;
. (kD) — 5(K) _
Eh =g 2Ui Z
end (for loop)
end (for loop)

© Al =al -y,
. forj=k+2ton
(k+1) — A(k+1) _—
ag ~ =a, =0
end (for loop)
. (k) — 5(K)

k= Ak Uk

(k+1) — A(k+D)
Qa1 = Aeari

end (for loop)
end (A"Y is symmetric, tridiagonal,
and similar to A= #).

4. |llustrative Example
The 44 matrix

4 1 -2 2]

1 2 0 1
A=

-2 0 3 -2

2 1 -2 -1

The Scientific Journal of The Faculty of Education - val.(1), No (2) January 2007

- 16 -



is symmetric. To illustrate the procedure involviedthe Householder
algorithm to transform (or reduce) this matrix indo matrix that is
symmetric and tridiagonal similar # = A®: we perform the following
computations.

Setk =1.

:—sgrmm)(z 2)” = ()(1+4+4§°= -3,

1, 1. Y2 1 4 2 (12)”2 .
=l —-q —— a = = —— — = — = 6|
(2 S J Fo-j0ra] =[] =
W<1):0;W(1>2:ﬂ_1+3 \@W.(l):ﬂ foreachj=3,...., n;
' 2 " o6 3 ' 2r

w_~2_-V6. o_ 2 \/_ Y _ @ﬁ@-
W; 2\/— 6 W, 2\/6 ;wd = 3 6 )’

6
1 0 0 0
0 -1 2 =2
) 3 3 3|
0 2 2 1
3 3 3
0 -2 1 2
L 3 3 3]
A(2) p(l) A(l) p(l)
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4 -2 0 0
L, 10, 4
— 3 3 .
0 1 S -4
3 3
0 4 -4 -1
L 3 3
Setk = 2.

n

5

Z(ajk)zj =-0.(V)* + 4/3))"* = 3

_ k
a=- Sgr(ak+1,k
j=k+1

1/2
- (G - 2omit

2
= (1 (2_5) _1(;5)(1))”2 _2\5.
2'9’° 2°3 3’
W(Z):O;W(Z)zo;w(k):alﬁli)l,k_a;w(g):1+5/3:2\/§;
1 2 k+1 zzr 3 22 :2\/35 ES
"3
all
W("):'_"foreachj:k+2,k+3,...,r\N(z)_ 4/3 _ﬁ,
Lo 25 5
2.——
3
w?=0 0 2_‘/?’ £5)t,
5 5
0 1 0 o0 0
2
p<z>:|_2(§J 0(002]) 0 1 0 0|
5)|2 o o ~8 -4
1 5 5
0 o 4 3
L 5 5 ]
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4 -3 0 0
4 10 5
A® =p@pAQPOA 3 3 )
|y 5 -3 68
3 25 75
o o 68 149
L 75 75 ]

The matrix A¥ is symmetric tridiagonal, and similar to the symuicet
matrix A = AL,

5. QR - method

Suppose that A is a real symmetric matrixhe preceding sections
we saw how Householder's method is used to cons@usimilar
tridiagonal matrix. In this sectio@R — method will be used to find all
eigenvalues of the symmetric tridiagonal matrixe(f& p 601]). Th&QR
- method has proved very efficient and robust amd Ipractically
outperformed all other methods [3]. If the originalatrix is not
symmetric, it is recommended first to transforntoitHessenberg matrix
form® (In the symmetric case a tridiagonal matrix woblel obtained.),

then theQR - method will be applied for finding all eigenvahiof a
general n x n real matrix, but it takes many iiereg and becomes time
consuming [7]. Plane rotations [2, pp.115-117] W used to construct
an orthogonal matrixQ” and an upper-triangular matriR”. The
important step of th&R - method iQR factorizatiot AY = Q¥ RY and

' Annxnmatrix Awithg=0forj>i+1is
called upper Hessenberg matrix; also when &
fori> j+1, then the matrix A is calleger
Hessenberg matrix.
2 TheQR factorization problem is defined as follows.
Given AO R™", m >= n, rank(A) = n, compute
Q OR™™andR O R™" that satisfy A QR,
Q'Q=1l, r; = 0, for all i > j where;f is an individual
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iteration A™ = RO Q0 = (@' AD Q¥ taken into account that the
matrix A"V is in tridiagonal formThe QR factorization arises in many
applications like solving the least squares probleeigenvalue
decomposition, singular value decomposition etc.
We shall follow [1], [3], [4], [6], and J#o investigate how th®R
- method applies a sequence of orthogonal transfioms Q¥ to the
symmetric tridiagonal matrix obtained by the Houddhr's method.
Suppose that the symmetric tridiagonal imm&ris written as

fa, b, O - O]
b, a, b, :
A={0 b, a . 0]. (5.1)
P o X
_O - 0 b n_|

Ifh, =0 or b, =0, then the 41 matri>[a | or [a,] has an eigenvalues

a or & of A. If bj = O for some where, < j < n, then the problem can be
reduced to considering, instead of A, the smallatrizes are

a b 0 .. 0 ]

b, & b 1

0 b a4 . O

oo e i
0 0 b, &,

and

‘a, b, O 0]

QH Q. QQ R

0 b, a,, - O (5.2)
| 0 0 b a

component oR.
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Now, suppose that & 0 for all j, theQR - method produces a
sequence of matrices’A= A, A® A®, . as follows.
= AW =A s factored as a product
A® = QW RW whereQ™ is orthogonal
matrix, andR" is upper triangular
matrix.
» A@js defined ad®@ = QW RW,
In generalconstruct the orthogonal matr@” and upper-triangular
matrix R so that

AD = QO RO,
Then define
APD = RO QO |

Orthogonality ofQ®” implies that
R = (Q)A®, and
A = RO QO = (QO)AD)Q®
:GQ(i))tA(i)Q(i)_ (5.3)

This implies that &Y and A’ are similar. An important
consequence is that’Ais similar to A and hence has the same structure.
Specifically, one can conclude that if A is trichegl then A is also
tridiagonal for all i. The process is continuedd doy induction, A™ has
the same eigenvalues as the original matrix A, akti® becomes a
diagonal matrix with the eigenvalues of A alongdiagonal.

In order to construct the matric®¥ andR®, a rotation matrikwill
be used.

It is obvious that, for any rotation matR, the matrices AP and PA
differs from A only in the'f and |" columns, and in thé"iand " rows
respectively. For any# j, the angle@ can be chosen so that the product

! A rotation matrix P differs from the identity miatin
at most four elements. These four elemargf the
form p=p; =cosp,and g =-p =sing for
somg and somei Z j.
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PA has a zero element for (RApince each plane rotation is presented by

an orthogonal matrix ppt =1,
The factorization of & into A® =
QW R® uses a product of n-1 rotation matrices to construc

1) — 1)
RY=pPP_,.PA
The first step is to choose the rotation matrip,with
Py = Py, =C0SP, and p, = —p,, =sing, ,Where

&

sing, :L, and cosg, =

Vb; +ar
Then the matrix
Al) =P, AL

has a zero in the (2, 1) subscript, since the Y2subscript in AY is

(~sing,)a, + (cosp )b, =22+ P2 =¢

Joi+al ol +a
Since the multiplication PA®Y affects both rows 1 and 2 of'A the new
matrix does not necessarily retain zero elementisarpositions (1, 3), (1,
4),... and (1, n). HoweveA™Y is tridiagonal, so the (1, 4),..., (1, n)
subscripts of AY must be 0. Only the (1, 3) subscript, the onénftrst
row and third column, can become nonzero.

In general, the plane rotation matrixtRFat reduces to zero the element
of A in position (k, k-1); that is, & =P Ar..Y . Continuing in similar
way, a plane rotation matrixR that will reduce to zero the element qf P
located in position (k-1, k+1). The matrix® has the form
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[z, ¢ 1, O 0]
0 :
0 :
: 0 24 Gy N :
AP =| .0 % Y O :
: bk+1 ak+1 bk+2 0
b,
_0 ...... 0 bn an_
and R+; has the form
1, o O |
Gea S
Ax1=| O O |«row (5.4)
S o)
i O 3 O ln—k—l_
Column k

whereO denotes the appropriately dimensional matrix \alttzero
elements.
The sequences
Cc = COSP, ,ands,,, =sing,,,in Pw1 are chosen so that the (k+1,

k) element ir A®, is zero; that iss,, X, —C,.,b.., =0. Since
¢/, + ¢, =1 the solutions of this equation are given by
Byt

Sci1 =TT —
2 2
A/ B T X

Xy

2 2’
v B T X

and c,,, =
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and A%, has the following form

0 . . . . .
(O . .
0z g0 x .
Afl) =] 00 X Yk O

oo be, &, by o 0

b

n

0O v v . 0 bn an_

The process is repeated with this constructiohénsequence,P..., Pn
produces the upper-tridiagonal matrix

z ¢ n O 0
0 :
R® = Afl) — 0
rn—2
. Zn—l qn—l
o . . . 0 x|

It remains the factorization of the matrix
QY =P!P... P!,
using theQR — method.
Since the orthogonality of the rotation matric@plies that
QYRM = (P/P... P!) (PiPy... P!)
= AV
The matrixQ™ is orthogonal since
QW) QW= (PP ...PY).(P,P;....P})
=(P,..P,R,).(P,P;..P) = I
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where,QW is an upper Hessenberg matrix. Therefor®) ARMQW s
also an upper Hessenberg matrix. Multiplyi@§” on the left by the
upper-triangular matrixR® does not affect the elements in the lower
triangle. This implies that ® is in tridiagonal form, since it is
symmetric.

The elements off the diagonal of®Awill generally be smaller in
absolute value than the corresponding elements®fgo A? is closer
to being a diagonal matrix than i$"A The process is repeated untfPA
A ... are constructed.

5.1. Acceleration Shift Technique

Although, theQR - method works much faster on special matrices
such as symmetric tridiagonal matrices, Hessenbegjrices, and
symmetric band matrices, comparing with other typ&snatrices, but
convergence is still slow even for matrices of $ndahension. Adding
shifting technique speeds up the rate of convergyhicand [6].

Assume that the eigenvalues of AA 1 A,, ..., A

IR ]
where|A,| >|A,| >--->|A,|. The diagonalization process is started with
this matrix.

The rate of convergence of the elemb{;}” to zero in the matrix &"

A

depends on the ratiiA,

/}|. The rate of convergence by’ to zero

determines the rate at which the elemla?ﬂ) converges to the™

eigenvalu A;. Thus, the rate of convergence can be slow if rtte®

A14/4;] = 1. In order to accelerate the rate of convergenahifting

technique will be used as follows.

A constanto is selected near to an eigenvalue of A. This idea
incorporated in the modified the factorization iguation (5.3) to
choosingQ® andR®, so that
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A -0 1=Q0RO (5.5)
then form
A =ROQY + T | (5.6)
This modification implies that, the rate of convenge ofb{’to zero
depends on the ra|(A,, =) /(A; - 0)|.
If ois chosen so thac=A,,, buio# A, then the original rate of

convergence o'a{™ to A, is determined.

The valu o in equation (5.5) is changed at each iterationhsb Wwhen

(' converges to zero faster thb!*? for

A has distinct eigenvalues trb
any integer j <n.
Let A =a'™® ancb{*is sufficiently small, delete thé"mow and column

of the matrix, and continue in the same way to fard approximation
toA, . ThenQR iterating with shifting is repeated until an appmation

has been found for each eigenvalue.
The shifting technique chooses at tHR iteration, the shifting
constar g,, whereo, is the eigenvalue of the matrix

(i) (i)
@_|:an—1 bn :|
- (i) (i)

bn an

that is closest ‘a’. This shift translates the eigenvalues of A by a

factoio, .
The method collects these shifts ub/*™ =0 and then adds the shifts to
al™ for approximation of the eigenvalA, .

If A has eigenvalues of the same absolute véiea b{'™ approaches

zero for some¢ j # n at a faster rate thb{*™.
Successive iteration is applied to smaller paisuimatrices obtained by
the matrix splitting technique is described in §5.2
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6. QR Algorithm

There are several algorithms [3] treating@R - method for finding
the eigenvalues of the symmetric tridiagonalmmatrix

a® b® 0 . 0
b2(1) aél)
A=A® =| O 0
b(l)
0 . 0bY a¥

The QR algorithm (for more details see [1] and [3]) tkaa shall present
can be found in and. The Pseudo-code of the afgoris as in the
following.
+ Setdimensionra®, .. a® b®, . b®;
tol; maximum number of iterations.
e k=1,
% collected shift
e shift=0;
* while k< mdo
» if |p{| <tol then
A =al +shift;
displa (A);
n=n-1,
iffol| < tol then
A =alY + shift;
displa(A);
n =n-1;

() = 50
a- =a,
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forj=2,...,n
al® =alf; b =by;
 if n =0 then pause
o if n=1theid = a® + shift;
displa(A);
pause.
e forj=3,...,n-1

if ‘bg")‘ <tol then display (‘split into’,
a®,...,a%, b ... .b%, ‘and’,a®, .. .a® b®,... b, shift);
pause
% compute shift

e b=-@¥ +a®);
c=a%al -[b™]?;
d = (b® - 4c)"?;
« ifb>0thely =-2c/(b+d);

U, =—(b+d)/2;
elsiy, = (d-b)/2;
U, =2c/(d =D);
e ifn=2thenA, =y, +shift;
A, = u, + shift;
displ.(4,,4,);
pause.

% choos o so that

o-al

|

= min.{ ‘,ul -al¥

-
% accumulate the shift
o shift+shift+o:
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% perform shift
e forj=1,...,n
d, =a¥ -0,

% compute &

* X =dy; Y, =by;
e forj=2,...,n
— 2 (k)72
Z, ., =SOrt[x® 2 +b, ]
(k)
_ X _b
Cj - ) a] -
zZ, zZ,

04 =CYj4 t5,dj;
X; =04 +¢;dj;

if j #nthenr,_, = o;b%;

(k) .
y; *C;bja

% A" =p,A% has just been computed
and K = A
% compute AV
«  Z =X;
a:l(.k+1) =0,q, tC,Z;; békﬂ) =0,7%,,
e forj=2,3,...,n-1

— (k) — .
472994662 b5 =01Z;

e a' =c,z,;
« k=k+1,
* End.

7. An Example Caleulation
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We shall illustrate the use of tH@R algorithm described in the
previous section for approximation of the eigenealwf the symmetric
tridiagonal 3x 3 matrix

31 0
A=|1 3 1
0 1 3

To follow the steps of th@R algorithm, for computing the eigenvalues
310 [a® B® o0
of A let A=[1 3 1|=|b{’ af b
013 |0 b® af
We have n = 3.
Letk = 1.
shift = 0.

b=-(a +a,%)=-6;

=05 K _ D12 = Q-
c=aya,” -[b,"]° =8

d=(-4cf®=2.
Since b < 0 so continuing the computation gives
d-b
H - 5 ) - 4
2C
= = 2,
H, (d—b)

Choosio so that
o=af|=min{ | -a], |1 2| |
g, =2
shift + shift+o =0 +2 = 2;
Findd, =a -0,j=1,2,3
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d b o0 11
AP=p® d, b®|=|1 1
0 b® d,| |01

Continuing the computation gives
x=d, =1 y,=b," =1

For j =2, 3 we have: J2 W2
O = o —
7, =42; cz=£; fﬁ; HATERATSI000
2 2 0o 1
q1=x/§; X, =0; ; since j #n S0 i
r =£' and y :@-
1 21 2 2,
z,=1 ¢c,=0; 0,=1,
Further _ 3
and; X, =——;
-t 2
s
soRY=A%=| 0 1 1
0O O —ﬂ
L 2_

In order to compu' A®, we have

_f a® =2 b =2,

2= 25 by
For j=2

(2)

1. b(2) —_

;/_ and af? =
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] A@ = R(l)Q(l) =

o nH ™
sln—\m‘ﬁ

ow‘slo

|

The first iterationof the QR - method is completed. Since neither

& is small, iteration two of th@R - method is

performed as follows.

Letk = 2.
shift = 0.
b=-(a® +a,?)=-1;

— .2 (2) )12 = _ .
c=afa,” ~[b,”]*=-0.5

d = (f — 4cf® = V3.
Since b < 0 so continuing the computation gives
1.1
==+=43
Mo 5 2\/_

Choosio so that

o -a@| = min{, -a®| |, -a?}

Findd, =a® -0,j=2,3

23660 0.7071 0.0000
AP=107071 13660 -0.7071
0.0000 -0.7071 0.3660
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x, =d, =2366Q y, =b,” =0.7071
For j =2, 3 we have:
z, = 24694 c,=0958% 0,=02863 O AP =
g, =1.1063 x, =1.1063 ; since jZn soO
r, =0.2025 and y, =-0.6775
24694 10687 -0.2025

0.0000 0.0000 1.0687
0.0000 -0.7071 0.3660

Further,

z, =1.313Q c, =0.8426 o, =-0.5385

g, =-0.7698 and; x, =-0.05633
24694 1.0687 -0.2025

0 R®=AP=/00000 13130 -0.7698
0.0000 0.0000 -0.0563

Computing A¥ is required to find

2, =x, =-00563 a% =26720; b?, =03759

For j=2 3

a®, =14736 b®; =0.0304 a?; =-0.0476
2.6720 03759 0.0000

A® =|0.3759 1.4736 0.0304 |.
0.0000 0.0304 -0.0746

If b{® =0.0304is sufficiently small, then the approximation to the

eigenvalu A, is 1.5864, the sum (a{® = -0.0476and the

1-+3)
2

shiftal +0,=2+ . Deleting the third row and column gives

2O = 26720 0.3759
0.3759 1.4736(
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which has eigenvalu g, =27802and y, =1.3654 Adding the shifts

gives the approximatio A, = 4.4142anc ), = 29994 Since the actual

eigenvalues of the matrix A are 4.4142, 3.0000, and 1.58581hk&R
- method gave the approximation to the eigenvalues in two itesation
only.

8. Computer Implementation and Results

8.1. Implementation
The above described two algorithms (Householder &R

algorithm) were implemented in Matlab software programming language.
The two Matlab functions, namelyRtfogram 1" & "Program 2") in the
Appendix are written as a function M - files (see [5] for details orldiat
programming language and its availabilitydouseholder.m and
QR_method_shift.m. The Matlab Program 1 shows a direct
implementation of the Householder algorithm and can be used to r@duce
real symmetric matrix A to a similar tridiagonal matrix. The Matlab
Program 2 uses the&)R algorithm with acceleration shifts to approximate
all the eigenvalues of the real symmetric tridiagonal matrix obtained by
Matlab Program 1. The function M-fileQR_method_shift.m (Program?2)
called by the function M-fileHouseholder.m ( Program 1). The Matlab
Program 2 follows from the QR algorithm, but with the following
exceptions:

- The Matlab commaneig is used to approximate the eigenvalues of
the matrix

- TheQR factorization of the matrix
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AV -0 1= QYR" s executed using the Matlab comm4d@JR] = qr(E).
This command produces an orthogonal ma@¥ and upper-triangular
matrix R”, such that
g0 = Q(i)R(i) _

8.2. Results

Running the Householder a@R algorithm programs Program 1" &
"Program 2") from the Appendix on this input gives the following result

1. The original (n x n) symmetric matrix is:

A=AN(1) =
4 1 -2
1 2 0 1
2 0 3 -2
2 1 -2 -1

2. The symmetric tridiagonal matrix A(n-
1) similar to A = A*(1) using
Householder algorithm is:

AN(n-1) =
4.0000 -3.0000 0 0
-3.0000 3.3333 -1.6667 0
0 -1.6667 -1.3200 0.9067
0 0 0.9067 1.9867

3. The eigenvalues of the symmetric
tridiagonal (nxn) matrix A*(n-1) using
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QR-method with acceleration shift is:

6.8446
-2.1975

1.0844

2.2685.

9. Conclusions

Given a real symmetric matrix A, an eigenvalues of A can be
approximated by th@R — method after application of the Householder's
method which reduces A to tridiagonal form. Shifting techniquesdaiial
computing eigenvalues of the matrix A for accelerating the rate of
convergence. Two algorithms were given to efficiently utilize the
approximation of the eigenvalues of the matrix A, namely Householder
and QR algorithms are those describe Householder's@Rd- methods.
Examples have been rendered which illustrates the two algorithms base
on the two methods. A Matlab implementations of the Household
algorithm andQR algorithm which are coded as a Matlab functions
(Householder.m and QR_method_shift.m) implement those algorithms.
The results obtained by executing the Matlab functions. This tsesul
shows that there is some accuracy and performance improvement fc
approximation of eigenvalues of the real symmetric matrix A when going
from the numerical procedure solution obtained without aid of cognput
to the fast computer procedure solution obtained either by the
Householder's method, or by tQ& — method.
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Appendix
Program 1

This Matlab program implements the Householder reduction of (n x n)
symmetric matrix to symmetric tridiagonal form.

function H=Householder (A)
clc; disp (' );
A=[41-22;1201;-203-2;21-2-1];
disp( 'L. The original (n x n) symmetric matrix 9s:disp(' '); disp( '
A=AN1)=");disp(" '); disp(A);
[m,n]=size(A);
m=n;
% Construct (n-2) Householder
transformations.
for k=1: n-2
q=0;
for j=k+1: n
a=q+A (j, k) "2;
end
% Compute alpha
if A (k+1, k)==0
alpha=-sqrt (q);
else
alpha=
(-sqrt (q)*A (k+1, k))/ (norm (A (k+1, k)));
end
mrs=alpha”2-alpha*A (k+1, k);
% Notice that mrs=2*r"2
% Construct v
v (k) =0;
v (k+1) =A (k+1, k)-alpha;
for j=k+2: n
v () =A G, K);
end
% Construct u
for j=k: n
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u (j) =0;
fori=k+1: n
u () =u () +A G, v ();
end
u (j) =u (j)/mrs;
end
mult=0;
for i=k+1: n
mult=mult+v (i)*u (i);
end
for j=k: n
z (j) =u ())-(mult/ (2*mrs))*v (j);
end
% Construct the matrices’AA®),
A9 AT,
for I=k+1: n-1
for j=I+1: n
AG D =AGD-v 0z ()-v @)z D);
AL =AG1D;
end
A(LD=ALD-2*v(l)*z(1);
end
A (n, n) =A (n, n)-2*v (n)*z (n);
for j=k+2: n
A (k, j) =0; A, k) =O0;
end
A (k+1, k) =A (k+1, k)-v (k+1)*z (k);
A (k, k+1) =A (k+1, k);
end
disp(");
disp( ' 2.The symmetric tridiagonal matrix A®(n-1) similar to A = A1)
using
Householder algorithm igdisp(' ;
disp(*  A"(n-1) =);disp(");
disp(A);
epsilon=eps;
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QR_method_shift(A,epsilon);
Program 2

This Matlab program implements the QR- method with acceleration shifts for
computation the eigenvalues of the symmetric tridiagonal
(n x n) matrix A" obtained by the Householder's method.

function D=QRMWAS(A,epsilon)
[m,n]=size(A);
m=n;
D=zeros(n,1);
E=A;
while (m>1)
while (abs(E(m,m-1))>=epsilon)
% calculate shift.
sigma=eig(E(m-1:m,m-1:m));
[i,j]=min([abs(E(m,m)*[1,1]'-sigma)]);
%QR factorization of E.
[Q.R]=qr(E-sigma(j)*eye(m));
% Calculate next E.
E=R*Q+ sigma(j)*eye(m);
end
% Place M eigenvalue in A(m,m).
A(1:m,1:m)=E;
% Repeat process on the (m-1)x(m-1)
submatrix of A.
m=m-1;
E=A(1:m,1:m);
end
m=n;
disp(");
disp(' 3.The eigenvalues of the symmetric
tridiagonal (nxn) matrix A*(n-1) using
QR-method with acceleration shift jdisp(' );
disp(diag(A))
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