A Literature Review on Arabic Automatic Question Generation

المؤلفون

  • Abdulkhaleq Amin Abdullah مؤلف
  • Khaled A. Al-Soufi مؤلف

DOI:

https://doi.org/10.59421/joeats.v3i1.2477

الكلمات المفتاحية:

Question generation، Arabic language، Artificial intelligence، Contexts

الملخص

This comprehensive literature review is dedicated to the field of Arabic Automatic Question Generation (AQG), which focuses on the development of computational models and algorithms for the automatic generation of questions. The review systematically covers key concepts in AQG, including question types and evaluation metrics. Additionally, it delves into the specific challenges associated with applying AQG techniques to the Arabic language, considering factors like complex morphology and dialectal variations. The review introduces a taxonomy of Arabic AQG approaches, classifying them into rule-based, template-based, and machine learning-based methods. It examines the pivotal role of datasets, resources, and evaluation methodologies in the training and assessment of AQG systems. Advancements in Arabic AQG are highlighted, and the review identifies emerging research directions, such as domain-specific question generation and integration into educational platforms.

In conclusion, the review provides valuable insights for researchers, developers, and educators interested in Arabic AQG. It addresses current advancements, challenges, and outlines potential future research directions, including the scarcity of labeled data and the necessity for domain-specific approaches. Overall, this review serves as a comprehensive resource in the realm of Arabic AQG.

المراجع

Bousmaha, K. Z., Chergui, N. H., Mbarek, M. S. A., & Belguith, L. H. (2020). AQG: Arabic Question Generator. Rev. d'Intelligence Artif., 34(6), 721-729.‏

Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A., Hosseinzadeh, M., & Ali Naqvi, R. (2021). Machine learning (ML) in medicine: Review, applications, and challenges. Mathematics, 9(22), 2970.‏

Biltawi, M. M., Tedmori, S., & Awajan, A. (2021). Arabic question answering systems: gap analysis. IEEE Access, 9, 63876-63904.‏

Alwaneen, T H., Azmi, A M., Aboalsamh, H., Wang, Z., & Hussain, A. (2021, July 12). Arabic question answering system: a survey. https://doi.org/10.1007/s10462-021-10031-1.

Alhashedi, S., Suaib, N. M., & Bakri, A. (2022). Arabic Automatic Question Generation Using Transformer Model (No. 8588). EasyChair.‏

Al-Janabi, A., Al-Zubaidi, E. A., Al-Sagheer, R. H. A., & Hussein, R. (2020). Encapsulation of semantic description with syntactic components for the Arabic language. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 961-967.

Fuad, A., & Al-Yahya, M. (2022). Recent developments in Arabic conversational AI: a literature review. IEEE Access, 10, 23842-23859.‏

Keklik, O. (2018). Automatic question generation using natural language processing techniques (Doctoral dissertation, Izmir Institute of Technology (Turkey)).‏

Beheitt, M. E. G., & Hmida, M. B. H. (2022). Automatic Arabic Poem Generation with GPT-2. In ICAART (2) (pp. 366-374).‏

Ushio, A., Alva-Manchego, F., & Camacho-Collados, J. (2023). A Practical Toolkit for Multilingual Question and Answer Generation. arXiv preprint arXiv:2305.17416.‏

Alsubhi, K., Jamal, A., & Alhothali, A. (2022). Deep learning-based approach for Arabic open domain question answering. PeerJ Computer Science, 8, e952.‏

Jayarajan, A K. (2020, March 30). Automatic Question Generation u sing Sequence to Sequence RNN Model. https://scite.ai/reports/10.35940/ijitee.e2675.039520.

Das, B., Majumder, M., Phadikar, S., & Sekh, A. A. (2021). Automatic question generation and answer assessment: a survey. Research and Practice in Technology Enhanced Learning, 16(1), 1-15.‏

Khan, S., & Emara, S. A. (2018). Effect of Technology Use in Education. International Journal of Pedagogical Innovation, 6(2).‏

Alotaibi, F., Abdullah, M T., Abdullah, R., Rahmat, R W O K., & Murad, M A A. (2019, November 22). A Method for Arabic Handwritten Diacritics Characters. https://scite.ai/reports/10.35940/ijeat.f1034.0986s319

Ali, M. N., Tan, G., & Hussain, A. (2018). Bidirectional recurrent neural network approach for Arabic named entity recognition. Future Internet, 10(12), 123.‏

Abdelali, A., Mubarak, H., Chowdhury, S. A., Hasanain, M., Mousi, B., Boughorbel, S., ... & Alam, F. (2023). Benchmarking Arabic AI with Large Language Models. arXiv preprint arXiv:2305.14982.‏

Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions. ACM Transactions on Asian Language Information Processing (TALIP), 8(4), 1-22.‏

Pranav, D S., & R, B P V. (2023, May 28). Histobot: Question Generation System Using Deep Learning Techniques. https://doi.org/10.47392/irjash.2023.s071

Krishna, R., Bernstein, M S., & Li, F. (2019, March 26). Information Maximizing Visual Question Generation. http://arxiv.org/abs/1903.11207

Abuali, B., & Kurdy, M. B. (2022). Full Diacritization of the Arabic Text to Improve Screen Readers for the Visually Impaired. Advances in Human-Computer Interaction.‏

Antoun, W., Baly, F., & Hajj, H. (2020). AraGPT2: Pre-trained transformer for Arabic language generation. arXiv preprint arXiv:2012.15520.‏

Alami, H., El Mahdaouy, A., Benlahbib, A., En-Nahnahi, N., Berrada, I., & Ouatik, S. E. A. (2023). DAQAS: Deep Arabic Question Answering System based on duplicate question detection and machine reading comprehension. Journal of King Saud University-Computer and Information Sciences, 35(8), 101709.‏

‏[24] Alkhurayyif, Y., & Sait, A. R. W. (2023). Developing an Open Domain Arabic Question Answering System Using a Deep Learning Technique. IEEE Access.‏

Wyse, B., & Piwek, P. (2009). Generating questions from openlearn study units.‏

Alsubait, T., Parsia, B., & Sattler, U. (2012). Automatic generation of analogy questions for student assessment: an Ontology-based approach. Research in Learning Technology, 20.‏

Kalady, S., Elikkottil, A., & Das, R. (2010, June). Natural language question generation using syntax and keywords. In Proceedings of QG2010: The Third Workshop on Question Generation (Vol. 11, pp. 1-10). questiongeneration. org.‏

Liu, M., Calvo, R. A., & Rus, V. (2010). Automatic question generation for literature review writing support. In Intelligent Tutoring Systems: 10th International Conference, ITS 2010, Pittsburgh, PA, USA, June 14-18, 2010, Proceedings, Part I 10 (pp. 45-54). Springer Berlin Heidelberg.‏

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.‏

Nagoudi, E. M. B., Elmadany, A., & Abdul-Mageed, M. (2021). AraT5: Text-to-text transformers for Arabic language generation. arXiv preprint arXiv:2109.12068.‏

Kalpakchi, D., & Boye, J. (2023). Quinductor: a multilingual data-driven method for generating reading-comprehension questions using universal dependencies. Natural Language Engineering, 1-39.‏

El-Khair, I. A. (2016). 1.5 billion words Arabic corpus. arXiv preprint arXiv:1611.04033.‏

Zeroual, I., Goldhahn, D., Eckart, T., & Lakhouaja, A. (2019, August). OSIAN: Open source international Arabic news corpus-preparation and integration into the CLARIN-infrastructure. In Proceedings of the fourth arabic natural language processing workshop (pp. 175-182).‏

kamel, S. M., Hassan, S. I., & Elrefaei, L. (2023). VAQA: Visual Arabic Question Answering. Arabian Journal for Science and Engineering, 1-21.‏

Kriangchaivech, K., & Wangperawong, A. (2019). Question generation by transformers. arXiv preprint arXiv:1909.05017.‏

Shaalan, K., Siddiqui, S., Alkhatib, M., & Abdel Monem, A. (2019). Challenges in Arabic natural language processing. In Computational linguistics, speech and image processing for Arabic language (pp. 59-83).‏

Suárez, P. J. O., Romary, L., & Sagot, B. (2020). A monolingual approach to contextualized word embeddings for mid-resource languages. arXiv preprint arXiv:2006.06202.‏

Mozannar, H., Hajal, K. E., Maamary, E., & Hajj, H. (2019). Neural Arabic question answering. arXiv preprint arXiv:1906.05394.‏

Al-Bataineh, H., Farhan, W., Mustafa, A., Seelawi, H., & Al-Natsheh, H. T. (2019, November). Deep contextualized pairwise semantic similarity for Arabic language questions. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1586-1591). IEEE.‏

Lewis, P., Oğuz, B., Rinott, R., Riedel, S., & Schwenk, H. (2019). MLQA: Evaluating cross-lingual extractive question answering. arXiv preprint arXiv:1910.07475.‏

Artetxe, M., Ruder, S., & Yogatama, D. (2019). On the cross-lingual transferability of monolingual representations. arXiv preprint arXiv:1910.11856.‏

Roy, U., Constant, N., Al-Rfou, R., Barua, A., Phillips, A., & Yang, Y. (2020). LAReQA: Language-agnostic answer retrieval from a multilingual pool. arXiv preprint arXiv:2004.05484.‏

Ismail, W. S., & Homsi, M. N. (2018). Dawqas: A dataset for Arabic why question answering system. Procedia computer science, 142, 123-131.‏

Hardalov, M., Mihaylov, T., Zlatkova, D., Dinkov, Y., Koychev, I., & Nakov, P. (2020). EXAMS: A multi-subject high school examinations dataset for cross-lingual and multilingual question answering. arXiv preprint arXiv:2011.03080.‏

Bonifacio, L., Jeronymo, V., Abonizio, H. Q., Campiotti, I., Fadaee, M., Lotufo, R., & Nogueira, R. (2021). mmarco: A multilingual version of the ms marco passage ranking dataset. arXiv preprint arXiv:2108.13897.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).

Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74-81).

Banerjee, S., & Lavie, A. (2005, June). METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization (pp. 65-72).

Riabi, A., Scialom, T., Keraron, R., Sagot, B., Seddah, D., & Staiano, J. (2021, January 1). Synthetic Data Augmentation for Zero-Shot Cross-Lingual Question Answering.https://scite.ai/reports/10.18653/v1/2021.emnlp-main.562

Vedantam, R., Zitnick, C.L., Parikh, D. (2015). CIDEr: Consensusbased image description evaluation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 07–12-June, pp. 4566–4575. https://doi.org/10.1109/CVPR.2015.7299087

Mulla, N., & Gharpure, P. (2023). Automatic question generation: a review of methodologies, datasets, evaluation metrics, and applications. Progress in Artificial Intelligence, 12(1), 1-32.

Ahmed, M. R. A. (2025). Accreditation and Quality Assurance: Exploring Impact and Assessing Institutional Change in the US and Saudi Arabian Higher Education Institutions. Arts for Linguistic & Literary Studies, 7(1), 626–639. https://doi.org/10.53286/arts.v7i1.2419

Al-Ghobesi, A. A. H. (2025). Risks of Relying on Artificial Intelligence in Learning Arabic Language Sciences Through the Meta Application. Arts for Linguistic & Literary Studies, 7(1), 396–419. https://doi.org/10.53286/arts.v7i1.2420.

Alharbi, K. N. . (2022). Female Saudi ESL Learners’ Attitudes Toward Communication in Mixed Gender Classes in the USA. Arts for Linguistic & Literary Studies, 1(13), 7–30. https://doi.org/10.53286/arts.v1i13.838.

التنزيلات

منشور

2025-03-05

إصدار

القسم

1

كيفية الاقتباس

A Literature Review on Arabic Automatic Question Generation (A. A. Abdullah & K. A. Al-Soufi). (2025). مجلة العلوم الهندسية والتقنية, 3(1), 73-90. https://doi.org/10.59421/joeats.v3i1.2477

المؤلفات المشابهة

1-10 من 23

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.